1、一、解答题1如图,在平面直角坐标系中,四边形各顶点的坐标分别为,现将四边形经过平移后得到四边形,点的对应点的坐标为(1)请直接写点、的坐标;(2)求四边形与四边形重叠部分的面积;(3)在轴上是否存在一点,连接、,使,若存在这样一点,求出点的坐标;若不存在,请说明理由2如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4
2、)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间3已知ABCD,线段EF分别与AB,CD相交于点E,F(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知A35,C62,求APC的度数;解:过点P作直线PHAB,所以AAPH,依据是;因为ABCD,PHAB,所以PHCD,依据是;所以C(),所以APC()+()A+C97(2)当点P,Q在线段EF上移动时(不包括E,F两点):如图2,APQ+PQCA+C+180成立吗?请说明理由;如图3,APM2MPQ,CQM2MQP,M+MPQ+PQM180,请直接写出M
3、,A与C的数量关系4如图1,把一块含30的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上(1)根据图1填空:1 ,2 ;(2)现把三角板绕B点逆时针旋转n如图2,当n25,且点C恰好落在DG边上时,求1、2的度数;当0n180时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由5阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到BED求证:BEDB+D(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整证明:过点E作EFAB,
4、则有BEF ABCD, ,FED BEDBEF+FEDB+D(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分ABC,DE平分ADC,且BE,DE所在的直线交于点E如图1,当点B在点A的左侧时,若ABC60,ADC70,求BED的度数;如图2,当点B在点A的右侧时,设ABC,ADC,请你求出BED的度数(用含有,的式子表示)6已知直线AB/CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3旋转至QD停止,此时射线PB也停
5、止旋转(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB与QC的位置关系为 ;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB/QC 7阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3221,522+1,所以2135是“依赖数”(1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数(3)已知一个大于1的正整数m可以分解成mpq+n4
6、的形式(pq,nb,p,q,n均为正整数),在m的所有表示结果中,当nqnp取得最小时,称“mpq+n4”是m的“最小分解”,此时规定:F(m),例:2014+2422+24119+14,因为1191124212222,所以F(20)1,求所有“特色数”的F(m)的最大值8给定一个十进制下的自然数,对于每个数位上的数,求出它除以的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数的“模二数”,记为.如.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:与相加得;与相加得与相加得,并向左边一位进.如的“模二数”相加的运算过程如
7、下图所示.根据以上材料,解决下列问题:(1)的值为_ ,的值为_ (2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如,因为,所以,即与满足“模二相加不变”.判断这三个数中哪些与“模二相加不变”,并说明理由;与“模二相加不变”的两位数有_个9阅读材料,回答问题:(1)对于任意实数x,符号表示“不超过x的最大整数”,在数轴上,当x是整数,就是x,当x不是整数时,是点x左侧的第一个整数点,如,则_,_(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高
8、价为8元/人次,不足1元按1元计算,具体权费标准如下:里程范围4公里以内(含4公里)4-12公里以内(含12公里)12-24公里以内(含24公里)24公里以上收费标准2元4公里/元6公里/元8公里/元若从下沙江滨站到文海南路站的里程是3.07公里,车费_元,下沙江滨站到金沙湖站里程是7.93公里,车费_元,下沙江滨站到杭州火东站里程是19.17公里,车费_元;若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?10规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222,(-3)(-3)(-3)(-3)等类比有理数的乘方,我们把222记作2,读作“2的圈3
9、次方”,(-3)(-3)(-3)(-3)记作(-3),读作“-3的圈4次方”,一般地,把 (a0)记作a,读作“a的圈n次方”(初步探究)(1)直接写出计算结果:2=_,()=_;(2)关于除方,下列说法错误的是_A任何非零数的圈2次方都等于1;B对于任何正整数n,1=1;C3=4;D负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(-3)=_;5=_;(-)=_(2)想一想:将一个非零有理数a的圈n次方写
10、成幂的形式等于_;(3)算一算:()(2)()11如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形由此得到了一种能在数轴上画出无理数对应点的方法(1)图2中A、B两点表示的数分别为_,_; (2)请你参照上面的方法:把图3中的长方形进行剪裁,并拼成一个大正方形在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长_(注:小正方形边长都为1,拼接不重叠也无空隙) 在的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及(图中标出必要线段的长)12我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照
11、一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如3,6,9等(1)2020属于 类(填A,B或C);(2)从A类数中任取两个数,则它们的和属于 类(填A,B或C); 从A、B类数中任取一数,则它们的和属于 类(填A,B或C); 从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A,B或C);(3)从A类数中任意取出m个数,从B类数中任意取出n个
12、数,把它们都加起来,若最后的结果属于C类,则下列关于m,n的叙述中正确的是 (填序号)属于C类;属于A类;,属于同一类13如图,在平面直角坐标系中,点,其中,是16的算术平方根,线段由线段平移所得,并且点与点A对应,点与点对应(1)点A的坐标为 ;点的坐标为 ;点的坐标为 ;(2)如图,是线段上不同于的任意一点,求证:;(3)如图,若点满足,点是线段OA上一动点(与点、A不重合),连交于点,在点运动的过程中,是否总成立?请说明理由14已知,定点,分别在直线,上,在平行线,之间有一动点(1)如图1所示时,试问,满足怎样的数量关系?并说明理由(2)除了(1)的结论外,试问,还可能满足怎样的数量关系
13、?请画图并证明(3)当满足,且,分别平分和,若,则_猜想与的数量关系(直接写出结论)15如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2)(1)直接写出点E的坐标 ;D的坐标 (3)点P是线段CE上一动点,设CBP=x,PAD=y,BPA=z,确定x, y,z之间的数量关系,并证明你的结论16某水果店到水果批发市场采购苹果,师傅看中了甲、乙两家某种品质一样的苹果,零售价都为8元/千克,批发价各不相同,甲家规定:批发数量不超过100千克,全部按零价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠,乙家的规定如下表
14、:数量范围(千克)不超过50的部分50以上但不超过150的部分150以上的部分价格(元)零售价的95%零售价的85%零售价的75%(1)如果师傅要批发240千克苹果选择哪家批发更优惠?(2)设批发x千克苹果(),问师傅应怎样选择两家批发商所花费用更少?17问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1x2,则ABy轴,且线段AB的长度为|y1y2|;若y1y2,则ABx轴,且线段AB的长度为|x1x2|;(应用):(1)若点A(1,1)、B(2,1),则ABx轴,AB的长度为 (2)若点C(1,0),且CDy轴,且CD2,则点D的
15、坐标为 (拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)|x1x2|+|y1y2|;例如:图1中,点M(1,1)与点N(1,2)之间的折线距离为d(M,N)|11|+|1(2)|2+35解决下列问题:(1)如图1,已知E(2,0),若F(1,2),则d(E,F) ;(2)如图2,已知E(2,0),H(1,t),若d(E,H)3,则t (3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q) 18对于平面直角坐标系xOy中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P(
16、x+t,yt)称为将点P进行“t型平移”,点P称为将点P进行“t型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”例如,将点P(x,y)平移到P(x+1,y1)称为将点P进行“l型平移”,将点P(x,y)平移到P(x1,y+1)称为将点P进行“l型平移”已知点A (2,1)和点B (4,1)(1)将点A (2,1)进行“l型平移”后的对应点A的坐标为 (2)将线段AB进行“l型平移”后得到线段AB,点P1(1.5,2),P2(2,3),P3(3,0)中,在线段AB上的点是 若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是 (3)已知点C (6,1),
17、D (8,1),点M是线段CD上的一个动点,将点B进行“t型平移”后得到的对应点为B,当t的取值范围是 时,BM的最小值保持不变19某工厂接受了20天内生产1200台GH型电子产品的总任务已知每台GH型产品由4个G型装置和3个H型装置配套组成工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G
18、型装置的加工,且每人每天只能加工4个G型装置设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)20阅读下面资料:小明遇到这样一个问题:如图1,对面积为a的ABC逐次进行以下操作:分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到A1B1C1,记其面积为S1,求S1的值.小明是这样思考和解决这个问题的:如图2,连接A1C、B1A、C1B,因为A1B=2AB,B1C=2BC,C1A=2CA,根据等高两三角形的面积比等于底之比,所以=2SABC=2a,由此继续推理,从而解决了这个问题.(1
19、)直接写出S1= (用含字母a的式子表示).请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P为ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把ABC分成六个小三角形,其中四个小三角形面积已在图上标明,求ABC的面积.(3)如图4,若点P为ABC的边AB上的中线CF的中点,求SAPE与SBPF的比值.21李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答
20、以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).22一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为,所以2534 是“7类诚勤数”(1)请判断7441和5436是否为“诚勤数”并说明理由;(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值2
21、3小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元”李老师算了一下,说:“你肯定搞错了”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?24如图,在平面直角坐标系中,已知,点,满足,(1)直接写出点,的坐标及的面积;(2)如图2,过点作直线,已知是上的一点,且,求的取值范围;(3)如图3,是线段上一
22、点,求,之间的关系;点为点关于轴的对称点,已知,求点的坐标25某数码专营店销售A,B两种品牌智能手机,这两种手机的进价和售价如表所示:AB进价(元/部)33003700售价(元/部)38004300(1)该店销售记录显示,三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍,求该店三月份售出A种手机和B种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B种手机数不低于A种手机数的,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案26对于实数x,若,则符合条件的中最大的正数为的内数,例如:8的内数是5;7的
23、内数是4(1)1的内数是_,20的内数是_,6的内数是_;(2)若3是x的内数,求x的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为,例如当时,如图2;当时,如图2,;用表示的内数;当的内数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标(若有多点并列最远,全部写出)27在平面直角坐标系xOy中点A,B,P不在同一条直线上对于点P和线段AB给出如下定义:过点P向线段AB所在直线作垂线,若垂足Q落在线段
24、AB上,则称点P为线段AB的内垂点若垂足Q满足|AQ-BQ|最小,则称点P为线段AB的最佳内垂点已知点A(2,1),B(1,1),C(4,3)(1)在点P1(2,3)、P2(5,0)、P3(1,2),P4(,4)中,线段AB的内垂点为 ;(2)点M是线段AB的最佳内垂点且到线段AB的距离是2,则点M的坐标为 ;(3)点N在y轴上且为线段AC的内垂点,则点N的纵坐标n的取值范围是 ;(4)已知点D(m,0),E(m+4,0),F(2m,3)若线段CF上存在线段DE的最佳内垂点,求m的取值范围28若关于x的方程ax+b0(a0)的解与关于y的方程cy+d0(c0)的解满足1xy1,则称方程ax+b
25、0(a0)与方程cy+d0(c0)是“友好方程”例如:方程2x10的解是x0.5,方程y10的解是y1,因为1xy1,方程2x10与方程y10是“友好方程”(1)请通过计算判断方程2x95x2与方程5(y1)2(1y)342y是不是“友好方程”(2)若关于x的方程3x3+4(x1)0与关于y的方程+y2k+1是“友好方程”,请你求出k的最大值和最小值29阅读理解:定义:,为数轴上三点,若点到点的距离是它到点的时距离的(为大于1的常数)倍,则称点是的倍点,且当是的倍点或的倍点时,我们也称是和两点的倍点例如,在图1中,点是的2倍点,但点不是的2倍点(1)特值尝试若,图1中,点_是的2倍点(填或)若
26、,如图2,为数轴上两个点,点表示的数是,点表示的数是4,数_表示的点是的3倍点(2)周密思考:图2中,一动点从出发,以每秒2个单位的速度沿数轴向左运动秒,若恰好是和两点的倍点,求所有符合条件的的值(用含的式子表示)(3)拓展应用数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”若(2)中满足条件的和两点的所有倍点均处于点的“可视距离”内,请直接写出的取值范围(不必写出解答过程)30在平面直角坐标系中,点坐标为,点坐标为,过点作直线轴,垂足为,交线段于点.(1)如图1,过点作,垂足为,连接.填空:的面积为_;点为直线上一动点,当时,求点的坐标;(2)如图2,点为线段延长线上一点,
27、连接,线段交于点,若,请直接写出点的坐标为_.【参考答案】*试卷处理标记,请不要删除一、解答题1(1);(2);(3)存在,或【分析】(1)先确定平移的规则,然后根据平移的规则,求出点的坐标即可;(2)由平移的性质可知,重叠部分为平行四边形,且底边长为3,高为2,即可求出面积;(3)设点的坐标为,先求出平行四边形ABCD的面积,然后利用三角形的面积公式,即可求出b的值【详解】解:(1),平移的规则为:向右平移2个单位,向上平移一个单位;,;(2)如图,延长交x轴于点E,过点做由平移可知,重叠部分为平行四边形,高为2, 重叠部分的面积为 (3)存在;设点的坐标为,点的坐标为或【点睛】本题考查了平
28、移的性质,平行四边形的性质,坐标与图形,以及求阴影部分的面积,解题的关键是熟练掌握平移的性质进行解题2(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当BCEF时,当BC
29、DF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,PQMN,EKMN,PQEK,PDEDEKDEFKEA,又DEF60PDE604515,故答案为:15;(3)如图3,分别过点F、H作FLMN,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL180,RHFHFLHF
30、ALFA,FGQ和GFA的角平分线GH、FH相交于点H,QGHFGQ,HFAGFA,DFE30,GFA180DFE150,HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(180105)37.5,GHFRHGRHF37.53067.5;(4)如图4,将DEF沿着CA方向平移至点F与A重合,平移后的得到DEA,DADF,DDEEAF5cm,DEEFDF35cm,DEEFDAAFDD351045(cm),即四边形DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:BCDE时,如图5,此
31、时ACDF,CAEDFE30,3t30,解得:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075,BKADRM75,ACK180ACB90,CAK90BKA15,CAE180EAMCAK1804515120,3t120,解得:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与DEF的一条边平行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键3(1)两直线平行,
32、内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)APQ+PQCA+C+180成立,理由见解答过程;3PMQ+A+C360【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据APM2MPQ,CQM2MQP,PMQ+MPQ+PQM180,即可证明PMQ,A与C的数量关系【详解】解:过点P作直线PHAB,所以AAPH,依据是两直线平行,内错角相等;因为ABCD,PHAB,所以PHCD,依据是平行于同一条直线的两条直线平行;所以C(CPH),所以APC(APH)+(CPH)A+C97故答案为:两直线平行
33、,内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)如图2,APQ+PQCA+C+180成立,理由如下:过点P作直线PHAB,QGAB,ABCD,ABCDPHQG,AAPH,CCQG,HPQ+GQP180,APQ+PQCAPH+HPQ+GQP+CQGA+C+180APQ+PQCA+C+180成立;如图3,过点P作直线PHAB,QGAB,MNAB,ABCD,ABCDPHQGMN,AAPH,CCQG,HPQ+GQP180,HPMPMN,GQMQMN,PMQHPM+GQM,APM2MPQ,CQM2MQP,PMQ+MPQ+PQM180,APM+CQMA+C+PMQ2MPQ+2M
34、QP2(180PMQ),3PMQ+A+C360【点睛】考核知识点:平行线的判定和性质熟练运用平行线性质和判定,添加适当辅助线是关键4(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相等可得1=ABE,根据两直线平行,同旁内角互补求出BCG,然后根据周角等于360计算即可得到2;结合图形,分AB、BC、AC三条边与直尺垂直讨论求解【详解】解:(1)1=180-60=120,2=90;故答案为:120,90;(2)如图2,ABC=60,ABE=180-60-n=120-n,DG
35、EF, 1=ABE=120-n,BCG=180-CBF=180-n,ACB+BCG+2=360,2=360-ACB-BCG=360-90-(180-n)=90+n;当n=30时,ABC=60,ABF=30+60=90,ABDG(EF);当n=90时,C=CBF=90,BCDG(EF),ACDE(GF);当n=120时,ABDE(GF)【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键5(1)B,EF,CD,D;(2)65;180【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图1,过点E作EFAB,当点B在点
36、A的左侧时,根据ABC60,ADC70,参考小亮思考问题的方法即可求BED的度数;如图2,过点E作EFAB,当点B在点A的右侧时,ABC,ADC,参考小亮思考问题的方法即可求出BED的度数【详解】解:(1)过点E作EFAB,则有BEFB,ABCD,EFCD,FEDD,BEDBEF+FEDB+D;故答案为:B;EF;CD;D;(2)如图1,过点E作EFAB,有BEFEBAABCD,EFCDFEDEDCBEF+FEDEBA+EDC即BEDEBA+EDC,BE平分ABC,DE平分ADC,EBAABC30,EDCADC35,BEDEBA+EDC65答:BED的度数为65;如图2,过点E作EFAB,有B
37、EF+EBA180BEF180EBA,ABCD,EFCDFEDEDCBEF+FED180EBA+EDC即BED180EBA+EDC,BE平分ABC,DE平分ADC,EBAABC,EDCADC,BED180EBA+EDC180答:BED的度数为180【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质6(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根据平行线的性质求得POE和QOE的度数,进而得结论;(2)分三种情况:当0t15时,当15t30时,当
38、30t45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间【详解】解:(1)如图1,当旋转时间30秒时,由已知得BPB1012120,CQC310=30,过O作OEAB,ABCD,ABOECD,POE180BPB60,QOECQC30,POQ90,PBQC,故答案为:PBQC;(2)当0t15时,如图,则BPB12t,CQC45+3t,ABCD,PBQC,BPBPECCQC,即12t45+3t,解得,t5; 当15t30时,如图,则APB12t180,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t18045+3t,解得,t25;当30t45时,如图,则BPB
39、12t360,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t36045+3t,解得,t45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题7(1)1022;(2)3066,2226;(3)【分析】(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位2千位百位,个位2千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2xy),个位数字是(2x+y),依据题
40、意列出代数式然后表示为7的倍数加余数形式,然后求出x、y即可,从而求出所有特色数;(3)根据最小分解的定义可知: n越小,p、q越接近,nqnp才越小,才是最小分解,此时F(m),故将(2)中特色数分解,找到最小分解,然后将n、p、q的值代入F(m),再比较大小即可.【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:210=2,个位上的数字为:210=2则最小的四位依赖数是1022;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2xy),个位数字是(2x+y),根据题意得:100y+10(2xy)+2x+y3y88y+22x21(4y+x)+(4y+x),21(4y+x)+(4y+x)被7除余3,4y+x3+7k,(k是非负整数)此方程的一位整数解为:x=4,y=5(此时2x+y10,故舍去);x3,y7(此时2xy0,故舍去);x3,y0;x2,y2;x1,y4(此时2xy0,故舍去);特色数是3066,2226(3)根据最小分解的定义可知: n越小,p、q越接近,nqnp才越小,才是最小分解,此时F(m)