1、人教版中学七年级下册数学期末试卷(含答案)一、选择题1如图,下列说法不正确的是( )A和是同旁内角B和是内错角C和是同位角D和是同旁内角2下列各组图形,可经平移变换,由一个图形得到另一个图形的是( )ABCD3下列各点中,在第二象限的是( )ABCD4下列命题是假命题的是( )A三角形三个内角的和等于B对顶角相等C在同一平面内,垂直于同一条直线的两条直线互相平行D两条直线被第三条直线所截,同位角相等5如图,已知平分,平分,下列结论正确的有( );若,则A1个B2个C3个D4个6若,则a,b,c的大小关系是( )ABCD7如图,中,平分,于点,则的度数为( )A134B124C114D1048如
2、图所示,平面直角坐标系中,轴负半轴有一点,点先向上平移1个单位至,接着又向右平移1个单位至点,然后再向上平移1个单位至点,向右平移1个单位至点,照此规律平移下去,点平移至点时,点的坐标为( )ABCD九、填空题9已知8,则x的值是_十、填空题10已知点与点关于轴对称,那么点关于轴的对称点的坐标为_十一、填空题11三角形ABC中,A=60,则内角B,C的角平分线相交所成的角为_十二、填空题12如图,点M为CD上一点,MF平分CME若157,则EMD的大小为_度十三、填空题13如图,将矩形ABCD沿MN折叠,使点B与点D重合,若DNM75,则AMD_十四、填空题14如图,将面积为5的正方形放在数轴
3、上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点,两点,则点,表示的数分别为_十五、填空题15在平面直角坐标系中,已知点P(2,3),PAy轴,PA=3,则点A的坐标为_十六、填空题16如图,在平面直角坐标系中,轴,轴,点、在轴上,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标_十七、解答题17计算:(1)(2)十八、解答题18已知a+b5,ab2,求下列各式的值(1)a2+b2;(2)(ab)2十九、解答题19推理填空:如图,已知BCGF,DGFF;求证:B+F180请在括号内填写
4、出证明依据证明:BCGF(已知),ABCD( )DGFF(已知), /EF( )AB/EF( )B+F180( )二十、解答题20已知在平面直角坐标系中有三点,请回答如下问题:(1)在平面直角坐标系内描出、,连接三边得到;(2)将三点向下平移2个单位长度,再向左平移1个单位,得到;画出,并写出、三点坐标;(3)求出的面积二十一、解答题21阅读下面的文字,解答问题 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,但是由于12,所以的整数部分为1,将减去其整数部分1,差就是小数部分为(1)解答下列问题: (1)的整数部分是 ,小数部分是 ;(2)如果的小数部分为a,
5、的整数部分为b,求a+b的值;(3)已知12+=x+y,其中x是整数,且0y1,求xy的相反数二十二、解答题22有一块正方形钢板,面积为16平方米(1)求正方形钢板的边长(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由(参考数据:,)二十三、解答题23如图,已知直线射线,是射线上一动点,过点作交射线于点,连接作,交直线于点,平分(1)若点,都在点的右侧求的度数;若,求的度数(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在请说明理由二
6、十四、解答题24如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且(1)求的度数(2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律(3)当点P运动到使时,求的度数二十五、解答题25如图1,已知ABCD,BE平分ABD,DE平分BDC(1)求证:BED90;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,EDF,ABF的角平分线与CDF的角平分线DG交于点G,试用含的式子表示BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,EBM的角平
7、分线与FDN的角平分线交于点G,探究BGD与BFD之间的数量关系,请直接写出结论:【参考答案】一、选择题1B解析:B【分析】根据同旁内角、内错角、同位角的概念判断即可【详解】解:如图,A1和A是MN与AN被AM所截成的同旁内角,说法正确,故此选项不符合题意;B2和B不是内错角,说法错误,故此选项符合题意;C3和A是MN与AC被AM所截成的同位角,说法正确,故此选项不符合题意;D4和C是MN与BC被AC所截成的同旁内角,说法正确,故此选项不符合题意;故选:B【点睛】此题考查了同旁内角、内错角、同位角,熟记同旁内角、内错角、同位角的概念是解题的关键2B【分析】根据平移的性质,结合图形对选项进行一一
8、分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于解析:B【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于平移得到;C、图形由轴对称得到,不属于平移得到;D、图形的方向发生变化,不符合平移的性质,不属于平移得到;故选:B【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向注意结合图形解题的思想3B【分析】根据各象限内点的坐标特征对各选项分析判断即可得解【详解】解
9、:A、点在x轴上,不符合题意;B、点在第二象限,符合题意;C、点在第三象限,不符合题意;D、点在第四象限,不符合题意;故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4D【分析】根据三角形内角和定理,对顶角的性质,平行线的判定和性质逐一判断即可.【详解】解:A、三角形三个内角的和等于180,故此说法正确,是真命题;B、对顶角相等,故此说法正确,是真命题;C、在同一平面内,垂直于同一条直线的两条直线互相平行两条,故此说法正确,是真命题;D、两条平行
10、直线被第三条直线所截,同位角相等,故此说法错误,是假命题.故选D.【点睛】本题主要考查了命题的真假,解题的关键在于能够熟练掌握相关知识进行判断求解.5C【分析】由三个已知条件可得ABCD,从而正确;由及平行线的性质则可推得正确;由条件无法推出ACBD,可知错误;由及平分,可得ACP=E,得ACBD,从而由平行线的性质易得,即正确【详解】平分,平分ACD=2ACP=22,CAB=21=2CAP ACD+CAB=2(1+2)=290=180故正确ABE=CDBCDB+CDF=180故正确由已知条件无法推出ACBD故错误,ACD=2ACP=22ACP=EACBDCAP=FCAB=21=2CAP故正确
11、故正确的序号为故选:C【点睛】本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键6D【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案【详解】解:,故选:D【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简7B【分析】已知AE平分BAC,EDAC,根据两直线平行,同旁内角互补可知DEA的度数,再由周角为360,求得BED的度数即可【详解】解:AE平分BAC,BAE=CAE=34,EDAC,CAE+AED=180,DEA=180-34=146,BEAE,AEB=90,AEB+BED+AED=360
12、,BED=360-146-90=124,故选:B【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键8C【分析】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可【详解】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2解析:C【分析】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可【详解】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),A2n-1(-2+n,n), ,A2021(1009,1011),故选:C【
13、点睛】本题考查坐标与图形变化一平移,解题的关键是学会探究规律的方法,属于中考常考题型九、填空题965【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】8x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键解析:65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】8x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键.十、填空题10【分析】先将a,b求出来,再根据对称性求出坐标即可【详解】根据题意可得:3=b,2a-1=3.解得a=2,b=3P(2,3)关于y轴对称的
14、点(2,3)故答案为: (2,解析:【分析】先将a,b求出来,再根据对称性求出坐标即可【详解】根据题意可得:3=b,2a-1=3.解得a=2,b=3P(2,3)关于y轴对称的点(2,3)故答案为: (2,3)【点睛】本题考查了关于坐标轴对称的点的坐标特征,熟练掌握是解题的关键十一、填空题11120和60【详解】试题分析:因为三角形的内角和是180度,所以B+C=180-A=180-60=120,又因为DFE=BFC,BFC=180-(FBC+FCB),解析:120和60【详解】试题分析:因为三角形的内角和是180度,所以B+C=180-A=180-60=120,又因为DFE=BFC,BFC=1
15、80-(FBC+FCB),因为角平分线CD、EF相交于F,所以FBC+FCB=(B+C)2=1202=60,再代入DFE=BFC=180-(FBC+FCB),即可解答试题解析:B+C=180-A=180-60=120,又因为DFE=BFC,BFC=180-(FBC+FCB),因为角平分线CD、EF相交于F,所以FBC+FCB=(B+C)2=1202=60,DFE=180-(FBC+FCB),=180-60,=120;DFE的邻补角的度数为:180-120=60考点:角的度量十二、填空题12【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=18
16、0-CME求出结果.【详解】ABCD,CMF=解析:【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=180-CME求出结果.【详解】ABCD,CMF=157,MF平分CME,CME=2CMF114,EMD=180-CME66,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.十三、填空题1330【分析】由题意,根据平行线的性质和折叠的性质,可以得到BMD的度数,从而可以求得AMD的度数,本题得以解决【详解】解:四边形ABCD是矩形,DNAM,DNM75解析:30【分析】由题意,根据平行
17、线的性质和折叠的性质,可以得到BMD的度数,从而可以求得AMD的度数,本题得以解决【详解】解:四边形ABCD是矩形,DNAM,DNM75,DNMBMN75,将矩形ABCD沿MN折叠,使点B与点D重合,BMNNMD=75,BMD150,AMD30,故答案为:30【点睛】本题考查了矩形的性质、平行线的性质、折叠的性质,属于基础常考题型,难度适中,熟练掌握这些知识的综合运用是解答的关键十四、填空题14,【分析】根据算术平方根的定义以及数轴的定义解答即可【详解】解:正方形的面积为5,圆的半径为,点A表示的数为,点表示的数为故答案为:,【点睛】本题考查了实数与数轴,熟解析:,【分析】根据算术平方根的定义
18、以及数轴的定义解答即可【详解】解:正方形的面积为5,圆的半径为,点A表示的数为,点表示的数为故答案为:,【点睛】本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键十五、填空题15(-2,6)或(-2,0)【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案【详解】解:由点P(-2,3),PAy轴,PA=3,得在P点解析:(-2,6)或(-2,0)【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案【详解】解:由点P(-2,3),PAy轴,PA=3,得在P点上方的A点坐标(-2,6),在P点下方的A点
19、坐标(-2,0),故答案为:(-2,6)或(-2,0)【点睛】本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏十六、填空题16【分析】先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题【详解】解:, “凸”形的周长为20,又的余数为1,细线另一端所在位置的点在的中点处,坐标为故解析:【分析】先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题【详解】解:, “凸”形的周长为20,又的余数为1,细线另一端所在位置的点在的中点处,坐标为故答案为:【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属
20、于中考常考题型十七、解答题17(1);(2)【分析】直接利用立方根以及算术平方根的定义化简得出答案【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键解析:(1);(2)【分析】直接利用立方根以及算术平方根的定义化简得出答案【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键十八、解答题18(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2(a+b)22ab,即可求解;(1)根据完全平方公式变形,得到(ab)2a2+b2-2ab,即可求解【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2(a+
21、b)22ab,即可求解;(1)根据完全平方公式变形,得到(ab)2a2+b2-2ab,即可求解【详解】解:(1)a+b5,ab2,a2+b2(a+b)22ab522221;(2)a+b5,ab2,(ab)2a2+b2-2ab=21-22=17【点睛】本题主要考查了完全平方公式,熟练掌握 及其变形公式是解题的关键十九、解答题19同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补【分析】根据平行线的判定得出ABCD,CDEF,求出ABEF解析:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平
22、行,这两条直线也互相平行;两直线平行,同旁内角互补【分析】根据平行线的判定得出ABCD,CDEF,求出ABEF,根据平行线的性质得出即可【详解】证明:B=CGF(已知),ABCD(同位角相等,两直线平行),DGF=F(已知),CDEF(内错角相等,两直线平行),ABEF(两条直线都与第三条直线平行,这两条直线也互相平行),B+F=180(两直线平行,同旁内角互补),故答案为:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键二十、解答题20(1
23、)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用解析:(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用割补法求面积即可【详解】解:(1)如图:(2)平移后如图:平移后坐标分别为:(-4,-2)、(4,2)、(0,3);(3)的面积: 【点睛】此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键二十一、
24、解答题21(1)3,3;(2)1;(3)14【分析】(1)根据的大小,即可求解;(2)分别求得a、b,即可求得代数式的值;(3)求得12+的整数部分x,小数部分y,即可求解【详解】解:(1)解析:(1)3,3;(2)1;(3)14【分析】(1)根据的大小,即可求解;(2)分别求得a、b,即可求得代数式的值;(3)求得12+的整数部分x,小数部分y,即可求解【详解】解:(1)的整数部分是3,小数部分是3;(2)23,34a=2,b=3a+b=2+3=1;(3)12,1312+14,x=13,y=1xy=13(1)=14xy的相反数是14【点睛】此题主要考查了无理数大小的估算,正确确定无理数的整数
25、部分和小数部分是解题的关键二十二、解答题22(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解解析:(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1)正方形的面积是16平方米,正方形钢板的边长是米;(2)设长方形的长宽分别为米、米,则,长方形长是米,而正方形的边长为4米,所以李师傅不能办到.【点睛】本题考查了算术平方根的实
26、际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.二十三、解答题23(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20解析:(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20,再根据PQCE,即可得出CPQ=ECP=60;(2)设EGC=3x,EFC=2x,则GCF=3x-2x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F
27、在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)ABCD,CEB+ECQ=180,CEB=110,ECQ=70,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCEECQ35;ABCD,QCG=EGC,QCG+ECG=ECQ=70,EGC+ECG=70,又EGC-ECG=30,EGC=50,ECG=20,ECG=GCF=20,PCFPCQ(7040)15,PQCE,CPQ=ECP=ECQ-PCQ=70-15=55(2)52.5或7.5,设EGC=3x,EFC=2x,当点G、F在点E的右侧时,ABCD,QCG=EGC=3x,QCF=EFC=2x,则GCF=QCG-QCF
28、=3x-2x=x,PCFPCQFCQEFCx,则ECG=GCF=PCF=PCD=x,ECD=70,4x=70,解得x=17.5,CPQ=3x=52.5;当点G、F在点E的左侧时,反向延长CD到H,EGC=3x,EFC=2x,GCH=EGC=3x,FCH=EFC=2x,ECG=GCF=GCH-FCH=x,CGF=180-3x,GCQ=70+x,180-3x=70+x,解得x=27.5,FCQ=ECF+ECQ=27.52+70=125,PCQFCQ62.5,CPQ=ECP=62.5-55=7.5,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键二
29、十四、解答题24(1);(2)不变化,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解解析:(1);(2)不变化,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解;(3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案【详解】(1)BC,BD分别评分和,又,;(2),又BD平分,;与之间的数量关系保持不变;(3),又,由(1)可得,【
30、点睛】本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解二十五、解答题25(1)见解析;(2)BGD;(3)2BGD+BFD360【分析】(1)根据角平分线的性质求出EBD+EDB(ABD+BDC),根据平行线的性质ABD+BDC180解析:(1)见解析;(2)BGD;(3)2BGD+BFD360【分析】(1)根据角平分线的性质求出EBD+EDB(ABD+BDC),根据平行线的性质ABD+BDC180,从而根据BED180(EBD+EDB)即可得到答案;(2)过点G作GPAB,根据ABCD,得到GPABCD,从而得到BGDBGP+PGDABG+CDG,然
31、后根据EBD+EDB90,ABD+BDC180,得到ABE+EDC90,即ABE+FDC90,再利用角平分线的定义求出2ABG+2CDG90即可得到答案;(3)过点F、G分别作FMAB、GMAB,从而得到ABGMFNCD,得到BGDBGM+DGM4+6,根据BG平分FBP,DG平分FDQ,4FBP(1803),6FDQ(1805),即可求解.【详解】解:(1)证明:BE平分ABD,EBDABD,DE平分BDC,EDBBDC,EBD+EDB(ABD+BDC),ABCD,ABD+BDC180,EBD+EDB90,BED180(EBD+EDB)90(2)解:如图2,由(1)知:EBD+EDB90,又
32、ABD+BDC180,ABE+EDC90,即ABE+FDC90,BG平分ABE,DG平分CDF,ABE2ABG,CDF2CDG,2ABG+2CDG90,过点G作GPAB,ABCD,GPABCDABGBGP,PGDCDG,BGDBGP+PGDABG+CDG;(3)如图,过点F、G分别作FNAB、GMAB,ABCD,ABGMFNCD,3BFN,5DFN,4BGM,6DGM,BFDBFN+DFN3+5,BGDBGM+DGM4+6,BG平分FBP,DG平分FDQ,4FBP(1803),6FDQ(1805),BFD+BGD3+5+4+6,3+5+(1803)+(1805),180+(3+5),180+BFD,整理得:2BGD+BFD360【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.