资源描述
人教版数学初二上学期期末试题带解析(一)
一、选择题
1.下列四个图形中,是中心对称图形且不是轴对称图形的为( )
A. B. C. D.
2.斑叶兰被列为国家二级保护植物,它的一粒种子约为0.00000052克,将0.00000052这个数用科学记数法表示为( )
A.5.2×107 B.0.52×10-8 C.5.2×10-6 D.5.2×10-7
3.下列计算正确的是( )
A. B. C. D.2a-a=2
4.使分式有意义的条件是( )
A.x=±3 B.x≠±3 C.x≠﹣3 D.x≠3
5.下列等式从左到右的变形,属于因式分解的是( )
A.x2﹣2x+2=(x﹣1)2+1 B.(a+b)(a﹣b)=a2﹣b2
C.x2﹣1=(x﹣1)2 D.x2﹣4x+4=(x﹣2)2
6.下列等式中,正确的是( )
A. B. C. D.
7.如图,A、B、C、D在同一直线上,,AE=DF,添加一个条件,不能判定△AEC≌△DFB的是( )
A. B.EC=BF C.AB=CD D.∠E=∠F
8.若关于x的一次函数的图象不经过第四象限,且关于x的分式方程有正数解,则符合条件的所有整数m的值之和是( )
A.-13 B.-10 C.-8 D.-7
9.如图,是的中线,,,则等于( )
A. B. C. D.
10.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=10cm,则△DEB的周长为( )
A.4cm B.6cm C.10cm D.不能确定
二、填空题
11.若分式的值为0,则x的值为____________.
12.若点和点关于轴对称,则____________.
13.若a+b=2,ab=-3,则的值为__________________.
14.若3x-5y-1=0,则________.
15.如图,在等边三角形ABC中,BC边上的中线AD=5,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是 ___.
16.若是一个完全平方式,则______.
17.如图,在四边形ABCD中,点F在BC的延长线上,∠ABC的平分线和∠DCF的平分线交于点E,若∠A+∠D=224°,则∠E=______.
18.如图,在Rt△中,,,,一条线段,,两点分别在和过点且垂直于的射线上运动,要使△和△全等,则_____.
三、解答题
19.因式分解:
(1)
(2)
20.先化简,再求值:,其中.
21.如图,AC平分∠BAD,AB=AD.求证:BC=DC.
22.在△ABC中,AD是角平分线..
(1)如图(1),AE是高,,,求∠DAE的度数;
(2)如图(2),点E在AD上,于F,试探究∠DEF与∠B、∠C的大小关系,并证明你的结论;
(3)如图(3),点E在AD的延长线上.于F,试探究∠DEF与∠B、∠C的大小关系是___(直接写出结论,不需证明).
23.小红、小明两人在400m的跑道上匀速跑步训练,他们同时从起点出发,跑向终点.已知小明的速度是小红速度的1.25倍,两人跑完全程小红要比小明多用16s,求小红、小明两人匀速跑步的速度?
24.阅读理解应用
待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.
待定系数法可以应用到因式分解中,例如问题:因式分解.
因为为三次多项式,若能因式分解,则可以分解成一个一次多项式和一个二次多项式的乘积.
故我们可以猜想可以分解成,展开等式右边得:
,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:,,可以求出,.
所以.
(1)若取任意值,等式恒成立,则________;
(2)已知多项式有因式,请用待定系数法求出该多项式的另一因式;
(3)请判断多项式是否能分解成的两个均为整系数二次多项式的乘积,并说明理由.
25.已知:AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°.
(1)如图1,若∠ABE=65°,∠ACF=75°,求∠BAC的度数.
(2)如图1,求证:EF=2AD.
(3)如图2,设EF交AB于点G,交AC于点R,FC与EB交于点M,若点G为EF中点,且∠BAE=60°,请探究∠GAF和∠CAF的数量关系,并证明你的结论.
26.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上一点,且DE=CE,连接BD,CD.
(1)判断与的位置关系和数量关系,并证明;
(2)如图2,若将△DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?并证明;
(3)如图3,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数.
【参考答案】
一、选择题
2.D
解析:D
【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,据此逐项判断即可.
【详解】解:A、是中心对称图形,也是轴对称图形,故此选项不符合题意;
B、是中心对称图形,也是轴对称图形,故此选项不符合题意;
C、是中心对称图形,也是轴对称图形,故此选项不符合题意;
D、是中心对称图形,不是轴对称图形,故此选项符合题意,
故选:D.
【点睛】本题考查中心对称图形和轴对称图形,理解定义,找准对称中心或对称轴是解答的关键.
3.D
解析:D
【分析】科学记数法的表示形式为 的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】解:0.00000052用科学记数法表示为5.2×;
故选:D.
【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中1≤|a|<10,解题的关键是确定a和n的值。
4.C
解析:C
【分析】根据幂的乘方、积的乘方、同底数幂的乘法和合并同类项法则逐项判断即可.
【详解】解:A.,原式计算错误;
B.,原式计算错误;
C.,计算正确;
D.2a-a=a,原式计算错误;
故选:C.
【点睛】本题考查了幂的乘方、积的乘方、同底数幂的乘法和合并同类项,熟练掌握运算法则是解题的关键.
5.D
解析:D
【分析】根据分式有意义的条件:分母≠0,即x-3≠0,进行求解即可.
【详解】解:∵分式有意义,
∴x-3≠0,
解得x≠3.
故选:D.
【点睛】此题考查了分式有意义的条件,熟练掌握分式有意义的条件:分母不等于0,是解决问题的关键.
6.D
解析:D
【分析】根据因式分解的定义进行判断即可.
【详解】解:A.等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;
B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
C.x2﹣1≠(x﹣1)2,故本选项不符合题意;
D.从左到右的变形属于因式分解,故本选项符合题意;
故选:D.
【点睛】本题考查了因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,解题时注意因式分解与整式乘法是相反的过程,二者是一个式子的不同表现形式.
7.B
解析:B
【分析】根据分式的基本性质逐一进行判断即可.
【详解】解:选项A:,故选项A错误;
选项B:,选项B正确;
选项C:,故选项C错误;
选项D:,故选项D错误;
故选:B.
【点睛】本题考查了分式的基本性质,属于基础题,计算过程中细心即可.
8.B
解析:B
【分析】根据题目条件可得AE=DF,∠A=∠D,再根据四个选项结合全等三角形的判定定理即可作出判断.
【详解】解:
A.∵AE∥DF,
∴∠A=∠D,
∵EC∥BF,
∴∠ACE=∠DBF,
∵AE=DF,
∴△AEC≌△DFB(AAS),
故此选项不合题意;
B.添加条件EC=BF,不能证明△AEC≌△DFB,故此选项符合题意;
C.∵AB=CD,
∴AC=BD,
∵AE∥DF,
∴∠A=∠D,
∵AE=DF,
∴△AEC≌△DFB(SAS),
故此选项不合题意;
D.∵AE∥DF,
∴∠A=∠D,
∵AE=DF,∠E=∠F,
∴△AEC≌△DFB(ASA),
故此选项不合题意;
故选:B.
【点睛】此题主要考查了三角形全等的判定方法,熟练掌握判定三角形全等的方法是解题的关键.
9.C
解析:C
【分析】根据题意和一次函数的性质、分式方程有意义的条件,可以得出m的取值范围,再写出符合要求的m的整数值,再计算即可.
【详解】∵一次函数的图象不经过第四象限
∴
解得
解方程可得,
∵分式方程有正数解
且
解得且
由上述可得,m的取值范围为且
∴m的整数值为
∴符合条件的所有整数m的值之和是.
故选C.
【点睛】本题考查一次函数的性质、解分式方程、解一元一次不等式,解决本题的关键是明确题意,求出m的取值范围.
10.C
解析:C
【分析】根据直角三角形斜边.上的中线性质得出,从而得出,根据等腰三角形的性质得出,再根据三角形外角的性质可得,代入数据即可得出答案..
【详解】解:∵是的中线,,
∴,,
∴,
∴,
∵,,
∴,
∴.
故选:C.
【点睛】本题考查了直角三角形斜边上中线的性质,三角形外角性质和等腰三角形的性质等知识点,注意:直角三角形斜边上的中线等于斜边的一半.理解和掌握直角三角形斜边上中线的性质是解题的关键.
11.C
解析:C
【分析】根据角平分线定义和性质得出∠EAD=∠CAD,CD=DE,根据全等三角形的判定得出△DCA≌△DEA,根据全等三角形的性质得出AE=AC,求出AE=BC,再求出△DEB的周长=AB即可.
【详解】解:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴∠EAD=∠CAD,∠C=∠AED=90°,CD=DE,
在△DCA和△DEA中,
,
∴△DCA≌△DEA(AAS),
∴AE=AC,
∵AC=BC,
∴AE=AC=BC,
∵AB=10cm,
∴△DEB的周长为BD+DE+BE
=BD+CD+BE
=BC+BE
=AE+BE
=AB
=10cm,
故选:C.
【点睛】本题考查了角平分线的性质和全等三角形的性质和判定,能求出CD=DE和AE=AC是解此题的关键.
二、填空题
12.
【分析】根据分式的值为零的条件:分母不为零,分子为零,即可求出x的值.
【详解】解:根据分式的值为零的条件可得:
,
可得,
故答案为:.
【点睛】本题考查了分式的值为零的条件,熟知当分式的分母不为零,分子为零时,分式的值为零是解答本题的关键.
13.A
解析:2
【分析】直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出答案.
【详解】解:∵点A(a+1,3b−2)和点B(b−1,−2b)关于x轴对称,
∴,
解得:,
.
故答案为:2.
【点睛】本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
14.
【分析】根据异分母分式加减法法则计算即可.
【详解】解:∵a+b=2,ab=-3,
∴
=
=,
故答案为:.
【点睛】此题是分式的化简求值问题,涉及整体代入求值,正确掌握异分母分式的加减法计算法则是解题的关键.
15.10
【分析】原式利用同底数幂的除法法则变形,将已知等式代入计算即可求出值.
【详解】解:,即,
∴原式=.
故答案为:10
【点睛】此题考查了同底数幂的除法,熟练掌握运算法则是解本题的关键.
16.5
【分析】根据等边三角形的性质,可知B与C关于AD对称,过C作CF⊥AB交AD于点E,交AB于点F,则EB+EF的最小值为CF的长,求出CF的长即可求解.
【详解】解:∵△ABC是等边三角形,
解析:5
【分析】根据等边三角形的性质,可知B与C关于AD对称,过C作CF⊥AB交AD于点E,交AB于点F,则EB+EF的最小值为CF的长,求出CF的长即可求解.
【详解】解:∵△ABC是等边三角形,D是BC边中点,
∴AD⊥BC,
∴B与C关于AD对称,
过C作CF⊥AB交AD于点E,交AB于点F,
则BE+EF=CE+EF=CF,则EB+EF的最小值为CF的长,
∵AD=5,
∴CF=5,
故答案为5.
【点睛】本题考查轴对称求最短距离,熟练掌握利用轴对称求最短距离的方法,此题确定EB+EF的最小值为CF的长是解题的关键.
17.【分析】根据配方法解一元二次方程的方法求解即可.根据常数项等于一次项系数一半的平方即可求得.
【详解】是一个完全平方式,
.
解得.
故答案为:.
【点睛】本题考查了配方法的应用,掌握
解析:
【分析】根据配方法解一元二次方程的方法求解即可.根据常数项等于一次项系数一半的平方即可求得.
【详解】是一个完全平方式,
.
解得.
故答案为:.
【点睛】本题考查了配方法的应用,掌握配方法是解题的关键.
18.22°##22度
【分析】根据四边形内角和定理得到∠ABC+∠3=136°,利用角平分线的定义得到2∠1=∠ABC,2∠2=∠DCF,根据三角形的外角性质即可求解.
【详解】解:∵∠A+∠D=2
解析:22°##22度
【分析】根据四边形内角和定理得到∠ABC+∠3=136°,利用角平分线的定义得到2∠1=∠ABC,2∠2=∠DCF,根据三角形的外角性质即可求解.
【详解】解:∵∠A+∠D=224°,∠A+∠ABC+∠3+∠D=360°,
∴∠ABC+∠3=360°-224°=136°,
∠DCF+∠3=180°,
∵BE是∠ABC的平分线,CE是∠DCF的平分线,
∴2∠1=∠ABC,2∠2=∠DCF,
∴2∠1+∠3=136°,2∠2+∠3=180°,
∴2(∠2-∠1)=180°-136°=44°,
∴∠E=∠2-∠1=22°,
故答案为:22°.
【点睛】本题考查了四边形内角和定理,三角形的外角性质,角平分线的定义,熟记各图形的性质并准确识图是解题的关键.
19.12cm或6cm##6cm或12cm
【分析】当AP=12cm或6cm时,△ABC和△PQA全等,根据HL定理推出即可.
【详解】解:∵∠C=90°,AO⊥AC,
∴∠C=∠QAP=90°,
解析:12cm或6cm##6cm或12cm
【分析】当AP=12cm或6cm时,△ABC和△PQA全等,根据HL定理推出即可.
【详解】解:∵∠C=90°,AO⊥AC,
∴∠C=∠QAP=90°,
①当AP=6cm=BC时,
在Rt△ACB和Rt△QAP中
∵,
∴Rt△ACB≌Rt△QAP(HL),
②当AP=12cm=AC时,
在Rt△ACB和Rt△PAQ中
,
∴Rt△ACB≌Rt△PAQ(HL),
故答案为:12cm或6cm.
【点睛】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.
三、解答题
20.(1)
(2)
【分析】(1)先提公因式,然后再利用平方差公式进行因式分解即可;
(2)根据完全平方公式进行因式分解即可.
(1)
解:原式=;
(2)
解:原式=.
【点睛】本题主
解析:(1)
(2)
【分析】(1)先提公因式,然后再利用平方差公式进行因式分解即可;
(2)根据完全平方公式进行因式分解即可.
(1)
解:原式=;
(2)
解:原式=.
【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.
21.,
【分析】先通分,计算括号内分式的减法,利用完全平方公式等进行约分、化简,再将分式的除法转化为乘法,化简,最后由分式有意义的条件解得,代入求解即可.
【详解】解:
当时,
解析:,
【分析】先通分,计算括号内分式的减法,利用完全平方公式等进行约分、化简,再将分式的除法转化为乘法,化简,最后由分式有意义的条件解得,代入求解即可.
【详解】解:
当时,即
原式
.
【点睛】本题考查分式的混合运算,涉及完全平方公式、分式有意义的条件等知识,是重要考点,掌握相关知识是解题关键.
22.证明见解析.
【分析】先根据角平分线的定义可得,再根据三角形全等的判定定理证出,然后全等三角形的性质即可得证.
【详解】证明:平分,
,
在和中,,
,
.
【点睛】本题考查了角平分线
解析:证明见解析.
【分析】先根据角平分线的定义可得,再根据三角形全等的判定定理证出,然后全等三角形的性质即可得证.
【详解】证明:平分,
,
在和中,,
,
.
【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.
23.(1)15°
(2),证明见解析
(3)
【分析】(1)根据AE是高确定∠CEA的度数,再结合三角形内角和定理确定∠BAC和∠CAE的度数,根据AD是角平分线确定∠DAC的度数,进而即可求出∠
解析:(1)15°
(2),证明见解析
(3)
【分析】(1)根据AE是高确定∠CEA的度数,再结合三角形内角和定理确定∠BAC和∠CAE的度数,根据AD是角平分线确定∠DAC的度数,进而即可求出∠DAE的度数.
(2)过点A作AG⊥BC于G.根据两直线平行的判定定理和性质得到∠DEF=∠DAG,根据AG⊥BC确定∠CGA的度数,再结合三角形内角和定理用∠B和∠C表示∠BAC和∠CAG,根据AD是角平分线得到∠DAC,进而求出∠DAG,即可得到∠DEF与∠B、∠C的大小关系.
(3)过点A作AG⊥BC于G.根据两直线平行的判定定理和性质得到∠DEF=∠DAG,根据AG⊥BC确定∠CGA的度数,再结合三角形内角和定理用∠B和∠C表示∠BAC和∠CAG,根据AD是角平分线得到∠DAC,进而求出∠DAG,即可得到∠DEF与∠B、∠C的大小关系.
(1)
解:∵∠B=35°,∠C=65°,
∴∠BAC=180°-∠B-∠C=80°.
∵AD是角平分线,AE是高,
∴,∠CEA=90°.
∴∠CAE=180°-∠C-∠CEA=25°.
∴∠DAE=∠DAC-∠CAE=15°.
(2)
解:如下图所示,过点A作AG⊥BC于G.
∵EF⊥BC于F,
∴.
∴∠DEF=∠DAG.
∵∠B+∠C+∠BAC=180°,
∴∠BAC=180°-∠B-∠C.
∵AD是角平分线,AG⊥BC,
∴,∠CGA=90°.
∴∠CAG=180°-∠C-∠CGA=90°-∠C.
∴∠DAG=∠DAC-∠CAG=.
∴.
∴.
(3)
解:如下图所示,过点A作AG⊥BC于G.
∵EF⊥BC于F,
∴.
∴∠DEF=∠DAG.
∵∠B+∠C+∠BAC=180°,
∴∠BAC=180°-∠B-∠C.
∵AD是角平分线,AG⊥BC,
∴,∠CGA=90°.
∴∠CAG=180°-∠C-∠CGA=90°-∠C.
∴∠DAG=∠DAC-∠CAG=.
∴.
∴.
【点睛】本题考查了三角形内角和定理,两直线平行的判定定理和性质,角平分线的性质,综合应用这些知识点是解题关键.
24.小红匀速跑步的速度为5m/s;小明匀速跑步的速度为6.25m/s
【分析】设小红速度为xm/s,则小明的速度为1.25xm/s,根据题意,得,解方程即可.
【详解】解:设小红速度为xm/s,则小
解析:小红匀速跑步的速度为5m/s;小明匀速跑步的速度为6.25m/s
【分析】设小红速度为xm/s,则小明的速度为1.25xm/s,根据题意,得,解方程即可.
【详解】解:设小红速度为xm/s,则小明的速度为1.25xm/s,
根据题意,得,
解得,
经检验:是分式方程的解,
1.25x=6.25,
答:小红、小明两人匀速跑步的速度分别为5m/s和6.25m/s.
【点睛】本题考查了分式方程的应用,熟练掌握分式方程的应用题是解题的关键.
25.(1)1;(2);(3)多项式能分解成两个均为整系数二次多项式的乘积,理由详见解析.
【分析】(1)根据题目中的待定系数法原理即可求得结果;
(2)根据待定系数法原理先设另一个多项式,然后根据恒
解析:(1)1;(2);(3)多项式能分解成两个均为整系数二次多项式的乘积,理由详见解析.
【分析】(1)根据题目中的待定系数法原理即可求得结果;
(2)根据待定系数法原理先设另一个多项式,然后根据恒等原理即可求得结论;
(3)根据待定系数原理和多项式乘以多项式即可求得结论.
【详解】(1)根据待定系数法原理,得3-a=2,a=1.
故答案为1.
(2)设另一个因式为(x2+ax+b),
(x+1)(x2+ax+b)=x3+ax2+bx+x2+ax+b
=x3+(a+1)x2+(a+b)x+b
∴a+1=0 a=-1 b=3
∴多项式的另一因式为x2-x+3.
答:多项式的另一因式x2-x+3.
(3)多项式x4+x2+1能分解成两个整系数二次多项式的乘积.理由如下:
设多项式x4+x2+1能分解成①(x2+1)(x2+ax+b)或②(x+1)(x3+ax2+bx+c)或③(x2+x+1)(x2+ax+1),
①(x2+1)(x2+ax+b)
=x4+ax3+bx2+ax+b
=x4+ax3+(b+1)x2+ax+b
∴a=0, b+1=1 , b=1
由b+1=1得b=0≠1,故此种情况不存在.
②(x+1)(x3+ax2+bx+c),
=x4+ax3+bx2+cx+x3+ax2+bx+c
=x4+(a+1)x3+(b+a)x2+(b+c)x+c
∴a+1=0 b+a=1 b+c=0 c=1
解得a=-1,b=2,c=1,
又 b+c=0,b=-1≠2,故此种情况不存在.
③(x2+x+1)(x2+ax+1)
=x4+(a+1)x3+(a+2)x2+(a+1)x+1
∴a+1=0,a+2=1,
解得a=-1.
即x4+x2+1=(x2+x+1)(x2-x+1)
∴x4+x2+1能分解成两个整系数二次三项式的乘积却不能分解成两个整系数二次二项式与二次三项式的乘积.
答:多项式x4+x2+1能分解成两个整系数二次三项式的乘积.
【点睛】本题考查了因式分解的应用、多项式乘以多项式,解决本题的关键是理解并会运用待定系数法原理.
26.(1)∠BAC=50°
(2)见解析
(3)∠GAF﹣∠CAF=60°,理由见解析
【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解
解析:(1)∠BAC=50°
(2)见解析
(3)∠GAF﹣∠CAF=60°,理由见解析
【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解决问题;
(2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题;
(3)结论:∠GAF﹣∠CAF=60°.想办法证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可.
(1)
解:∵AE=AB,
∴∠AEB=∠ABE=65°,
∴∠EAB=50°,
∵AC=AF,
∴∠ACF=∠AFC=75°,
∴∠CAF=30°,
∵∠EAF+∠BAC=180°,
∴∠EAB+2∠ABC+∠FAC=180°,
∴50°+2∠BAC+30°=180°,
∴∠BAC=50°.
(2)
证明:证明:如图,延长AD至点H,使DH=AD,连接BH
∵AD是△ABC的中线,
∴BD=DC,
又∵DH=AD,∠BDH=∠ADC
∴△ADC≌△HDB(SAS),
∴BH=AC,∠BHD=∠DAC,
∴BH=AF,
∵∠BHD=∠DAC,
∴BH∥AC,
∴∠BAC+∠ABH=180°,
又∵∠EAF+∠BAC=180°,
∴∠ABH=∠EAF,
又∵AB=AE,BH=AF,
∴△AEF≌△BAH(SAS),
∴EF=AH=2AD,
∴EF=2AD;
(3)
结论:∠GAF﹣∠CAF=60°.
理由:由(2)得,AD=EF,又点G为EF中点,
∴EG=AD,
由(2)△AEF≌△BAH,
∴∠AEG=∠BAD,
在△EAG和△ABD中,
,
∴△EAG≌△ABD,
∴∠EAG=∠ABC=60°,AG=BD,
∴△AEB是等边三角形,AG=CD,
∴∠ABE=60°,
∴∠CBM=60°,
在△ACD和△FAG中,
,
∴△ACD≌△FAG,
∴∠ACD=∠FAG,
∵AC=AF,
∴∠ACF=∠AFC,
在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°,
∴60°+2∠BCF=360°,
∴∠BCF=150°,
∴∠BCA+∠ACF=150°,
∴∠GAF+(180°﹣∠CAF)=150°,
∴∠GAF﹣∠CAF=60°.
【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
27.(1), ;(2), ;(3).
【分析】(1)先判断出,再判定,再判断,
(2)先判断出,再得到同理(1)可得结论;
(3)先判断出,再判断出,最后计算即可.
【详解】解:(1)与的位置关
解析:(1), ;(2), ;(3).
【分析】(1)先判断出,再判定,再判断,
(2)先判断出,再得到同理(1)可得结论;
(3)先判断出,再判断出,最后计算即可.
【详解】解:(1)与的位置关系是:,数量关系是.
理由如下:
如图1,延长交于点.
于,
.
,,
,
,,.
,
.
AE⊥BC
∴,
,
.
(2)与的位置关系是:,数量关系是.
如图,线段AC与线段BD交于点F,线段AE与线段BD交于点G,
,
,
即.
,,
,
,.
AE⊥BC
∴,
又∵
,
.
(3)如图,线段AC与线段BD交于点F,
和是等边三角形,
,,,,
,
,
在和中,
,
∴,
,
与的夹角度数为.
【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,等边三角形的性质,判断垂直的方法,解本题的关键是判断.
展开阅读全文