1、人教最新人教版七年级数学下册期中试卷(含答案)一、选择题1下列计算正确的是()ABC|3|3D3292在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( )ABCD3坐标平面内的下列各点中,在轴上的是( )ABCD4下列命题:过直线外一点有且只有一条直线与已知直线平行;在同一平面内,过一点有且只有一条直线与已知直线垂直;图形平移的方向一定是水平的;内错角相等其中真命题为( )ABCD5如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b中的直线b上,已知,则的度数为 ABCD6若,则( )A632.9B293.8C2938D63297一副直角三角板如图所示摆放,它们
2、的直角顶点重合于点,则()ABCD8如图,在平面直角坐标系中,长方形ABCD的各边分别平行于x轴或y轴,一物体从点A(-2,1)出发,沿矩形ABCD的边按逆时针作环绕运动,速度为1个单位/秒,则经过2022秒后,物体所在位置的坐标为( )A(2,1)B(2,1)C( 2,1)D( 2,1)二、填空题9已知非零实数a.b满足|2a-4|+|b+2|+4=2a,则2a+b=_10点P关于y轴的对称点是(3,2),则P关于原点的对称点是_11如图,BD、CE为ABC的两条角平分线,则图中1、2、A之间的关系为_12如图,直线,若,_13如图,把一张长方形纸片沿折叠后,、分别落在,的位置上,与交于点,
3、若,则_14已知实数a、b互为相反数,c、d互为倒数,e是的整数部分,f是的小数部分,求代数式ef_15已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标_.16如图,在平面直角坐标系中,一动点从原点O出发,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,1),P5(2,1),P6(2,0),则P2020的坐标是_三、解答题17(1)计算:(2)解方程:18求下列各式中的x值:(1)16(x+1)225; (2)8(1x)312519完成下面的证明与解题如图,ADBC,点E是BA延长线上一点,EDCE(1)求证:BD证明:ADBC,B_
4、(_)EDCE,ABCD(_)D_(_)BD(2)若CE平分BCD,E50,求B的度数20如图,在正方形网格中,三角形的三个顶点和点都在格点上(正方形网格的交点称为格点)点,的坐标分别为,平移三角形,使点平移到点,点,分别是,的对应点(1)请画出平移后的三角形,并分别写出点E、F的坐标;(2)求的面积;(3)在轴上是否存在一点,使得,若存在,请求出的坐标,若不存在,请说明理由21阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数
5、减去其整数部分,差就是小数部分请解答:(1)若的整数部分为,小数部分为,求的值(2)已知:,其中是整数,且,求的值22如图,用两个边长为10的小正方形拼成一个大的正方形.(1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?23已知:直线ABCD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN(1)如图1,延长HN至G,BMH和GND的角平分线相交于点E求证:2MENMHN180;(2)如图2,BMH和HND的角平分线相交于点E请直接写出MEN与MHN的数量关系: ;作MP平分AMH,NQMP交ME的延长线于点
6、Q,若H140,求ENQ的度数(可直接运用中的结论)【参考答案】一、选择题1B解析:B【分析】依据算术平方根、平方根的定义以及绝对值和有理数的乘方法则求解即可【详解】解:A、,故A错误;B、,故B正确;C、|-3|=3,故C错误;D、-32=-9,故D错误故选:B【点睛】本题主要考查的是算术平方根的性质以及有理数的乘方,掌握相关知识是解题的关键2D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的
7、距离,连续作图设计出的图案进行分析即可【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向3A【分析】根据y轴上点的横坐标为0,即可判断【详解】解:y轴上点的横坐标为0,点符合题意故选:A【点睛】本题主要考查了点的坐标的特征,解题的关键是熟练掌握y轴上点的横坐标为04A【分析】根据两直线的位置关系即可判断.【详解】过直线外一点
8、有且只有一条直线与已知直线平行,正确;在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;图形平移的方向不一定是水平的,故错误;两直线平行,内错角才相等,故错误故正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5B【分析】先根据平行线的性质求出1的同位角,再由两角互余的性质求出2的度数即可;【详解】直线ab,1=55,1=3=55,三角板的直角顶点放在b上,3+2=90,2=90-55=35,故选:B【点睛】本题考查了平行线的性质,即两直线平行,同位角相等以及互余的两角,正确掌握知识点是解题的关键;6B【分析】把,再利用立方根的性质化简即可得到答案.
9、【详解】解: , 故选:【点睛】本题考查的是立方根的含义,立方根的性质,熟练立方根的含义与性质是解题的关键.7C【分析】由AB/CO得出BAO=AOC,即可得出BOD【详解】解:,故选:【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题8C【分析】用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置【详解】解:由图可得,长方形的周长为2(12+22)=12,2022=16解析:C【分析】用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置【详解】解:由图可得,长方形的周长为2(12+22)=1
10、2,2022=16812+6,经过2022秒后,该物体应运动了168圈,且继续运动6个单位,从A点开始按逆时针运动6秒到达了C点,经过2022秒后,物体所在位置的坐标为(2,-1)故选:C【点睛】本题主要考查了平面直角坐标系、点的坐标规律,解决本题的关键是得出2022=16812+6,即经过2022秒后,该物体应运动了168圈,且继续运动6个单位二、填空题94【分析】首先根据算术平方根的被开方数0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0根据非负数的性质可分别求出a和b的值,即可求出2a+b的值【详解】解:解析:4【分析】首先根据算术平方根的被开方数0,求出a的
11、范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0根据非负数的性质可分别求出a和b的值,即可求出2a+b的值【详解】解:由题意可得a3,2a-40,已知等式整理得:|b+2|+=0,a=3,b=-2,2a+b=23-2=4故答案为4【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键10【分析】直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点的性质得出答案【详解】解:点P关于y轴的对称点是,点,则P关于原点的对称点是故答案为:【点睛】本题考解析:【分析】直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点
12、的性质得出答案【详解】解:点P关于y轴的对称点是,点,则P关于原点的对称点是故答案为:【点睛】本题考查关于x轴、y轴对称的点的坐标求法、关于原点对称的点的坐标求法,牢记相关性质是解题关键111+2-A=90【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出1+2与A的关系,再根据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、C解析:1+2-A=90【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出1+2与A的关系,再根据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、CE为ABC的两条角平分线,ABD=ABC,ACE=ACB,1=ACE+A,2
13、=ABD+A1+2=ACE+A+ABD+A=ABC+ACB+A+A(ABC+ACB+A)+A =90+A故答案为1+2-A=90【点睛】考查了三角形的内角和等于180、外角与内角关系及角平分线的性质,是基础题三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和1260【分析】过点E作EFAB,由平行线的性质,先求出CEF=120,即可求出的度数【详解】解:过点E作EFAB,如图:,CEF=120,;故答解析:60【分析】过点E作EFAB,由平行线的性质,先求出CEF=120,即可求出的度数【详解】解:过点E作EFAB,如图:,CEF=120,;故答案为:60
14、【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质,正确的作出辅助线,从而进行解题1368【分析】先根据平行线的性质求得DEF的度数,再根据折叠求得DEG的度数,最后计算AEG的大小【详解】解:AD/BC,DEF=EFG=56,由折叠可得,GEF解析:68【分析】先根据平行线的性质求得DEF的度数,再根据折叠求得DEG的度数,最后计算AEG的大小【详解】解:AD/BC,DEF=EFG=56,由折叠可得,GEF=DEF=56,DEG=112,AEG=180-112=68故答案为:68【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等14【分析】根
15、据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可【详解】解:实数a、b互为相反数,a+b0,c、d互为倒数,cd1,34,的整数部分解析:【分析】根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可【详解】解:实数a、b互为相反数,a+b0,c、d互为倒数,cd1,34,的整数部分为3,e3,23,的小数部分为2,即f2,-ef=4-故答案为:4-【点睛】本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键15(4,0)或(4,0)【详解】试题解析:设C点坐标为(|x|,0) 解得:x=4所以,点C的
16、坐标为(4,0)或(-4,0).解析:(4,0)或(4,0)【详解】试题解析:设C点坐标为(|x|,0) 解得:x=4所以,点C的坐标为(4,0)或(-4,0).16(673,-1)【分析】先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6336(2336,0),可得P2016(672,0),进而解析:(673,-1)【分析】先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6336(2336,0),可得P2016(672,0),进而得到P2020(673,-1)【详解】解:由图可
17、得,P6(2,0),P12(4,0),P6n(2n,0),P6n+4(2n+1,-1),20166=336,P6336(2336,0),即P2016(672,0),P2020(673,-1)故答案为:(673,-1)【点睛】本题主要考查了点的坐标变化规律,解决问题的关键是根据图形的变化规律得到P6n(2n,0)三、解答题17(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可【详解】解:(1)=解析:(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分
18、母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可【详解】解:(1)=;(2),去分母,可得:3(x+1)-6=2(2-3x),去括号,可得:3x+3-6=4-6x,移项,可得:3x+6x=4-3+6,合并同类项,可得:9x=7,系数化为1,可得:x=【点睛】此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为118(1)或;(2)【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答【详解】解:(1)等式两边都除以16,得. 等式两边开平方,得. 所以,得. 所以,解析:(1)或;(2)
19、【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答【详解】解:(1)等式两边都除以16,得. 等式两边开平方,得. 所以,得. 所以, (2)等式两边都除以8,得. 等式两边开立方,得. 所以,【点睛】本题考查平方根、立方根,解题关键是熟记平方根、立方根.19(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80【分析】(1)根据平行线的性质及判定填空即可;(2)由EDCE,E50,解析:(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80【分析】(1)根据平行线的性质及判定填空即
20、可;(2)由EDCE,E50,可得ABCD,DCE50,而CE平分BCD,即得BCD100,故B80【详解】(1)证明:ADBC,BEAD(两直线平行,同位角相等),EDCE,ABCD(内错角相等,两直线平行),DEAD(两直线平行,内错角相等),BD;故答案为:EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)解:EDCE,E50,ABCD,DCE50,B+BCD180,CE平分BCD,BCD2DCE100,B80【点睛】本题考查平行线性质及判定的应用,解题关键是要掌握平行线的性质及判定定理,熟练运用它们进行推理和计算20(1)画图见解析,E(2,
21、-2),F(6,-1);(2)7;(3)(10,0)或(-18,0)【分析】(1)根据平移的性质即可画出平移后的三角形DEF,并写出点E,F的坐标;(2)利用割补法计解析:(1)画图见解析,E(2,-2),F(6,-1);(2)7;(3)(10,0)或(-18,0)【分析】(1)根据平移的性质即可画出平移后的三角形DEF,并写出点E,F的坐标;(2)利用割补法计算即可;(3)根据ABC的面积得到BCM的面积,从而计算出BM,可得点M的坐标;【详解】解:(1)如图,三角形DEF即为所求,点E(2,-2),F(6,-1);(2)SABC=7;(3),点C的坐标为(0,1),BM=,B(-4,0),
22、点M的坐标为(10,0)或(-18,0)【点睛】本题考查了作图-平移变换,三角形的面积,解决本题的关键是掌握平移的性质21(1)6;(2)12【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论【详解】解析:(1)6;(2)12【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论【详解】解:(1) 34, a=3,b=-3 =+-3-=6(2) 12又10+=x+y,其中x是整数,且0y1
23、,x=11, y=1xy=11(1)=12【点睛】此题考查的是求无理数的整数部分、小数部分和实数的运算,掌握求无理数的取值范围是解决此题的关键22(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】(1)大正方形的边长是(2)设长方形纸片的长为3xcm,宽为2xcm,则3x2x=480,解得:x=因为,所以沿此大正
24、方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式23(1)见解析;(2)2MENMHN360;20【分析】(1)过点E作EPAB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)2MENMHN360;20【分析】(1)过点E作EPAB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等即可得证(2)过点H作GIAB,利用(1)中结论2MENMHN180,利用平行线的性质、角平分线
25、性质、邻补角和为180,角与角之间的基本运算、等量代换等得出AMHHNC360(BMHHND),进而用等量代换得出2MENMHN360过点H作HTMP,由的结论得2MENMHN360,H140,MEN110利用平行线性质得ENQENHNHT180,由角平分线性质及邻补角可得ENQENH140(180BMH)180继续使用等量代换可得ENQ度数【详解】解:(1)证明:过点E作EPAB交MH于点Q如答图1EPAB且ME平分BMH,MEQBMEBMHEPAB,ABCD,EPCD,又NE平分GND,QENDNEGND(两直线平行,内错角相等)MENMEQQENBMHGND(BMHGND)2MENBMH
26、GNDGNDDNH180,DNHMHNMONBMHDHNBMHMHNGNDBMHMHN180,即2MENMHN180(2):过点H作GIAB如答图2由(1)可得MEN(BMHHND),由图可知MHNMHINHI,GIAB,AMHMHI180BMH,GIAB,ABCD,GICDHNCNHI180HNDAMHHNC180BMH180HND360(BMHHND)又AMHHNCMHINHIMHN,BMHHND360MHN即2MENMHN360故答案为:2MENMHN360:由的结论得2MENMHN360,HMHN140,2MEN360140220MEN110过点H作HTMP如答图2MPNQ,HTNQENQENHNHT180(两直线平行,同旁内角互补)MP平分AMH,PMHAMH(180BMH)NHTMHNMHT140PMHENQENH140(180BMH)180ENHHNDENQHND14090BMH180ENQ(HNDBMH)130ENQMEN130ENQ13011020【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强