1、七年级下册数学 期末试卷(培优篇)(Word版 含解析)一、选择题1如图,属于同位角的是( )A与B与C与D与2下列现象中,()是平移A“天问”探测器绕火星运动B篮球在空中飞行C电梯的上下移动D将一张纸对折3在平面直角坐标系中,平行于坐标轴的线段,若点坐标是,则点不在( )A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是( )A对顶角相等B两条直线被第三条直线所截,同位角相等C在同一平面内,垂直于同一条直线的两条直线互相平行D在同一平面内,过直线外一一点有且只有一条直线与已知直线平行5如图,的角平分线的反向延长线和是角平分线交于点,则等于( )A42B44C72D766按如图所示
2、的程序计算,若开始输入的x的值是64,则输出的y的值是( )ABC2D37如图,AB/CD,ADAC,ACD53,则BAD的度数为()A53B47C43D378在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上向右向下向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点,第次移动到点,则点的坐标是( )ABCD二、填空题9计算_10在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是_11如图,点D是ABC三边垂直平分线的交点,若A64,则D_12如图,直线ABCD,OAOB,若1=140,则2=_度13如图,将长方形纸片沿
3、折叠,交于点E,得到图1,再将纸片沿折叠得到图2,若,则图2中的为_14对于任意有理数a,b,规定一种新的运算aba(a+b)1,例如,252(2+5)113则(2)6的值为_15在平面直角坐标系中,已知点P(2,3),PAy轴,PA=3,则点A的坐标为_16如图,点A(0,1),点(2,0),点(3,2),点(5,1),按照这样的规律下去,点的坐标为 _三、解答题17(1)已知,求x的值;(2)计算:.18求下列各式中的x值:(1)(x1)24;(2)(2x+1)3+640;(3)x3319如图,已知1+AFE=180,A=2,求证:A=C+AFC 证明: 1+AFE=180 CDEF( ,
4、 )A=2 ( ) ( , ) ABCDEF( , ) A= ,C= ,( , ) AFE =EFC+AFC , = 20如图,在平面直角坐标系中,ABC的顶点都在网格点上,每个小正方形边长为1个单位长度(1)将ABC向右平移6个单位,再向下平移3个单位得到A1B1C1,画出图形,并写出各顶点坐标;(2)求ABC的面积21任意无理数都是由整数部分和小数部分构成的已知一个无理数a,它的整数部分是b,则它的小数部分可以表示为例如:,即,显然的整数部分是2,小数部分是根据上面的材料,解决下列问题:(1)若的整数部分是m,的整数部分是n,求的值(2)若的整数部分是,小数部分是y,求的值二十二、解答题2
5、2如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?二十三、解答题23(1)(问题)如图1,若,求的度数;(2)(问题迁移)如图2,点在的上方,问,之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数24如图1所示:点E为BC上一点,AD,ABCD(1)直接写出ACB与BED的数量关系;(2)如图2,ABC
6、D,BG平分ABE,BG的反向延长线与EDF的平分线交于H点,若DEB比GHD大60,求DEB 的度数;(3)保持(2)中所求的DEB的度数不变,如图3,BM平分EBK,DN平分CDE,作BPDN,则PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由(本题中的角均为大于0且小于180的角)25在ABC中,射线AG平分BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DEAC交AB于点E(1)如图1,点D在线段CG上运动时,DF平分EDB若BAC100,C30,则AFD;若B40,则AFD;试探究AFD与B之间的数量关系?请说明理由;(2)点D在线段BG上运动
7、时,BDE的角平分线所在直线与射线AG交于点F试探究AFD与B之间的数量关系,并说明理由26如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、(1)当点与点、在一直线上时,则_(2)若点与点、不在一直线上,试探索、之间的关系,并证明你的结论【参考答案】一、选择题1A解析:A【分析】根据同位角、内错角、同旁内角的意义进行判断即可【详解】解:2与3是两条直线被第三条直线所截形成的同位角,因此选项A符合题意1与4是对顶角,因此选项B不符合题意1与3是内错角,因此选项C不符合题意2与4同旁内角,因此选项D不符合题意故选:A【点睛】本题考查同位角、内错角、同旁
8、内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提2C【分析】根据平移的定义,对选项进行一一分析,排除错误答案在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移【详解】解:A. “天问”探测器绕火星运动不解析:C【分析】根据平移的定义,对选项进行一一分析,排除错误答案在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移【详解】解:A. “天问”探测器绕火星运动不是平移,故此选项不符合题意; B. 篮球在空中飞行不是平移,故此选项不符合题意;C. 电梯的上下移动是平移,故此选项符合题意; D. 将一张纸对折不是平移,故
9、此选项不符合题意故选:C【点睛】本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别3D【分析】设点 ,分轴和轴,两种情况讨论,即可求解【详解】解:设点 ,若轴,则点P、Q的纵坐标相等,线段,若点坐标是, , ,解得: 或 , 或 ;若轴,则点P、Q的横坐标相等,线段,若点坐标是, , ,解得: 或 , 或 ,点 或或 或 ,点不在第四象限故选:D【点睛】本题主要考查了坐标与图形,线段与坐标轴平行时点的坐标特征,分轴和轴,两种情况讨论是解题的关键4B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案【详解】A、对顶角相等;真命题;B、两条直线被第三条直线所截,
10、同位角相等;假命题;只有两直线平行时同位角才相等;C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;故选:B【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题正确的命题叫做真命题,错误的命题叫做假命题5B【分析】过F作FHAB,依据平行线的性质,可设ABF=EBF=BFH,DCG=ECG=CFH,根据四边形内角和以及E-F=48,即可得到E的度数【详解】解:如图,过F作FHAB,ABCD,FHABCD,DCE的角平分线CG的反向延长线和ABE的角平分线BF交于点F,可设ABF=EBF=BFH,DCG=EC
11、G=CFH,ECF=180-,BFC=BFH-CFH=-,四边形BFCE中,E+BFC=360-(180-)=180-(-)=180-BFC,即E+2BFC=180,又E-BFC=48,E =BFC+48,由可得,BFC+48+2BFC=180,解得BFC=44,故选:B【点睛】本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补6A【分析】根据计算程序图计算即可【详解】解:当x=64时,2是有理数,当x=2时,算术平方根为是无理数,y=,故选:A【点睛】此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确
12、计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键7D【分析】因为ADAC,所以CAD90由AB/CD,得BAC180ACD,进而求得BAD的度数【详解】解:AB/CD,ACD+BAC180CAB180ACD18053127又ADAC,CAD90BADCABCAD1279037故选:D【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键8B【分析】根据题意可得 , ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点的纵坐标,然后根据,可得:,即可求解【详解】解:由题意得: ,解析:B【分析】根据题意可得 , ,由此得出纵坐标规律:以1,1
13、,0,0的顺序,每4个为一个循环,可求出点的纵坐标,然后根据,可得:,即可求解【详解】解:由题意得: , ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环, ,点的纵坐标为1,由此得:,故选:B【点睛】本题主要考查了平面直角坐标系中点的坐标规律题坐标与旋转,解题的关键是理解题意找出规律解答问题二、填空题911【分析】直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案【详解】解:原式=2+9=11故答案为:11【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正解析:11【分析】直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案【详解】解:原式=2+
14、9=11故答案为:11【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正确化简各数是解题关键10(2,1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标解析:(2,1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数【详解】解:点(2,1)关于x轴对称的点的坐标是(2,1),故答案为(2,1)【点睛】熟练掌握关于坐标
15、轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称点,横坐标不变,纵坐标变成相反数关于y轴的对称点,纵坐标不变,横坐标变成相反数11128【解析】【分析】由点D为三边垂直平分线交点,得到点D为ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】D为ABC三边垂直平分线交点,点D为ABC的解析:128【解析】【分析】由点D为三边垂直平分线交点,得到点D为ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】D为ABC三边垂直平分线交点,点D为ABC的外心,D=2AA=64D=128故D的度数为128【点睛】此题考查线段垂直平分线的性质,解题关键在于根据同弧所
16、对的圆周角等于圆心角的一半来解答1250【分析】先根据垂直的定义得出O=90,再由三角形外角的性质得出3=1O=50,然后根据平行线的性质可求2【详解】OAOB,O=90,1=3+O=1解析:50【分析】先根据垂直的定义得出O=90,再由三角形外角的性质得出3=1O=50,然后根据平行线的性质可求2【详解】OAOB,O=90,1=3+O=140,3=1O=14090=50,ABCD,2=3=50,故答案为:50【点睛】此题主要考查三角形外角的性质以及平行线的性质,熟练掌握,即可解题.13126【分析】在图1中,求出BCE,根据折叠的性质和外角的性质得到EDG,在图2中结合折叠的性质,利用CDG
17、=EDG-CDE可得结果【详解】解:在图1中,AEC=36,解析:126【分析】在图1中,求出BCE,根据折叠的性质和外角的性质得到EDG,在图2中结合折叠的性质,利用CDG=EDG-CDE可得结果【详解】解:在图1中,AEC=36,ADBC,BCE=180-AEC=144,由折叠可知:ECD=(180-144)2=18,CDE=AEC-ECD=18,DEF=AEC=36,EDG=180-36=144,在图2中,CDG=EDG-CDE=126,故答案为:126【点睛】本题考查了平行线的性质,折叠问题以及三角形的外角性质,利用三角形的外角性质,找出EDG的度数是解题的关键14-9【分析】直接利用
18、已知运算法则计算得出答案【详解】(2)62(2+6)1241819故答案为9【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案【详解】(2)62(2+6)1241819故答案为9【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.15(-2,6)或(-2,0)【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案【详解】解:由点P(-2,3),PAy轴,PA=3,得在P点解析:(-2,6)或(-2,0)【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两
19、个,位于该点的上下,可得答案【详解】解:由点P(-2,3),PAy轴,PA=3,得在P点上方的A点坐标(-2,6),在P点下方的A点坐标(-2,0),故答案为:(-2,6)或(-2,0)【点睛】本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏16(1500,501)【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可【详解】观察图形可得,点(2,0),点(5,1),(8,2),(3n1,n1),点解析:(1500,501)【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可【详解】观察图形可得
20、,点(2,0),点(5,1),(8,2),(3n1,n1),点(3,2),(6,3),(9,4),(3n,n+1),1000是偶数,且10002n,n500,(1500,501),故答案为:(1500,501)【点睛】本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键三、解答题17(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:; x=3或x=-1 (2)原式= ,【解析:(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、
21、算术平方根和立方根的性质求解.【详解】(1)解:; x=3或x=-1 (2)原式= ,【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.18(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x12或x12,解得:x3或x1;(2)方程整理得:(2x+1)364,开
22、立方得:2x+14,解得:x2.5;(3)方程整理得:x3,开立方得:x1.5【点睛】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式019同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁解析:同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等
23、;A,C+AFC 【分析】根据同旁内角互补,两直线平行可得 CDEF,根据A=2利用同位角相等,两直线平行,ABCD,根据平行同一直线的两条直线平行可得ABCDEF根据平行线的性质可得A=AFE ,C=EFC,根据角的和可得 AFE =EFC+AFC 即可【详解】证明: 1+AFE=180 CDEF(同旁内角互补,两直线平行),A=2 ,( ABCD ) (同位角相等,两直线平行), ABCDEF(两条直线都与第三条直线平行,则这两直线也互相平行) A= AFE ,C= EFC,(两直线平行,内错角相等) AFE =EFC+AFC , A = C+AFC 故答案为同旁内角互补两直线平行;ABC
24、D;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键20(1)见解析;A1(1,-2)、B1(4,2)、C1(5,-4)(2)ABC的面积为11【分析】(1)根据平移的规律得到A1,B1,C1点,再顺次连接即可;根据A1,B1,C1在坐标系中的位解析:(1)见解析;A1(1,-2)、B1(4,2)、C1(5,-4)(2)ABC的面积为11【分析】(1)根据平移的规律得到A1,B1,C1点,再顺次连接即可;根据A1,B1,C1在坐标系中的
25、位置写出各点坐标即可;(2)根据图形的面积的和差求出ABC的面积即可【详解】解:如图所示,、;【点睛】本题考查了利用平移变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键21(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算【详解】解:(1),的整数部分是解析:(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算【详解】解:(1),的整数部分是3,即m=3,的整数部分是2,即n=2,=0
26、;(2),的整数部分是10,即2x=10,x=5,的小数部分是=,即y=,=【点睛】本题考查了二次根式的整数和小数部分看懂题例并熟练运用是解决本题的关键二十二、解答题22(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意
27、得:,解得:,长是1.5m,宽是0.5m.(2)正方形的面积为7平方米,正方形的边长是米,3,他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.二十三、解答题23(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,进而可得PF解析:(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,
28、进而可得PFC=PEA+FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得GEF+GFEPEA+PFC+OEF+OFE,由(2)得PEA=PFC-,由OFE+OEF=180-FOE=180-PFC可求解【详解】解:(1)如图1,过点P作PMAB,1=AEP又AEP=40,1=40ABCD, PMCD, 2+PFD=180PFD=130,2=180-130=501+2=40+50=90即EPF=90(2)PFC=PEA+P理由:过P点作PNAB,则PNCD,PEA=NPE,FPN=NPE+FPE,FPN=PEA+FPE,PNCD,FPN=PFC,PFC=PEA+F
29、PE,即PFC=PEA+P;(3)令AB与PF交点为O,连接EF,如图3在GFE中,G=180-(GFE+GEF),GEFPEA+OEF,GFEPFC+OFE,GEF+GFEPEA+PFC+OEF+OFE,由(2)知PFC=PEA+P,PEA=PFC-,OFE+OEF=180-FOE=180-PFC,GEF+GFE(PFC)+PFC+180PFC180,G180(GEF+GFE)180180+【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键24(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如
30、图2,过点E作ESAB,过点H作HTAB,根据ABCD,ABE解析:(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE交AB于点F,根据平行线的性质推出;(2)如图2,过点E作ESAB,过点H作HTAB,根据ABCD,ABES推出,再根据ABTH,ABCD推出,最后根据比大得出的度数;(3)如图3,过点E作EQDN,根据得出的度数,根据条件再逐步求出的度数【详解】(1)如答图1所示,延长DE交AB于点FABCD,所以,又因为,所以,所以ACDF,所以因为,所以(2)如答图2所示,过点E作ESAB,过点H作HTAB设,因为ABCD,ABES,所以,所以,因为ABTH,
31、ABCD,所以,所以,因为比大,所以,所以,所以,所以(3)不发生变化如答图3所示,过点E作EQDN设,由(2)易知,所以,所以,所以,所以【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键25(1)115;110;理由见解析;(2);理由见解析【分析】(1)若BAC=100,C=30,由三角形内角和定理求出B=50,由平行线的性质得出EDB=C=30,由解析:(1)115;110;理由见解析;(2);理由见解析【分析】(1)若BAC=100,C=30,由三角形内角和定理求出B=50,由平行线的性质得出EDB=C=30,由角平分线定义得出,
32、由三角形的外角性质得出DGF=100,再由三角形的外角性质即可得出结果;若B=40,则BAC+C=180-40=140,由角平分线定义得出,由三角形的外角性质即可得出结果;由得:EDB=C,由三角形的外角性质得出DGF=B+BAG,再由三角形的外角性质即可得出结论;(2)由(1)得:EDB=C,,由三角形的外角性质和三角形内角和定理即可得出结论【详解】(1)若BAC=100,C=30,则B=180-100-30=50,DEAC,EDB=C=30,AG平分BAC,DF平分EDB,DGF=B+BAG=50+50=100,AFD=DGF+FDG=100+15=115;若B=40,则BAC+C=180
33、-40=140,AG平分BAC,DF平分EDB,DGF=B+BAG,AFD=DGF+FDG=B+BAG+FDG=故答案为:115;110;理由如下:由得:EDB=C,DGF=B+BAG,AFD=DGF+FDG=B+BAG+FDG=;(2)如图2所示:;理由如下:由(1)得:EDB=C,AHF=B+BDH,AFD=180-BAG-AHF【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键26(1)120;(2)EPF =AEP+CFP或AEP=EPF+CFP,证明见详解【分析】(1)根据题意,当点与点、在一直线上时,作出
34、图形,由ABCD,FHP=60,可以推出解析:(1)120;(2)EPF =AEP+CFP或AEP=EPF+CFP,证明见详解【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由ABCD,FHP=60,可以推出=60,计算PFD即可;(2)根据点P是动点,分三种情况讨论:当点P在AB与CD之间时;当点P在AB上方时;当点P在CD下方时,分别求出AEP、EPF、CFP之间的关系即可【详解】(1)当点与点、在一直线上时,作图如下,ABCD,FHP=60,=FHP=60,EFD=180-GEP=180-60=120,PFD=120,故答案为:120;(2)满足关系式为EPF =AEP+CFP
35、或AEP=EPF+CFP证明:根据点P是动点,分三种情况讨论:当点P在AB与CD之间时,过点P作PQAB,如下图,ABCD,PQABCD,AEP=EPQ,CFP=FPQ,EPF=EPQ+FPQ=AEP+CFP,即EPF =AEP+CFP;当点P在AB上方时,如下图所示,AEP=EPF+EQP,ABCD,CFP=EQP,AEP=EPF+CFP;当点P在CD下方时,ABCD,AEP=EQF,EQF=EPF+CFP,AEP=EPF+CFP,综上所述,AEP、EPF、CFP之间满足的关系式为:EPF =AEP+CFP或AEP=EPF+CFP,故答案为:EPF =AEP+CFP或AEP=EPF+CFP【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题