1、七年级下册呼和浩特数学期末试卷达标检测(Word版 含解析)一、选择题1如图,直线AD,BE被直线BF和AC所截,则1的同位角和5的内错角分别是( )A2 和4B6和4C2 和6D6和32下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是( )ABCD3在平面直角坐标系中,点(3,2)在()A第一象限B第二象限C第三象限D第四象限4下列命题中假命题有( )两条直线被第三条直线所截,同位角相等如果两条直线都与第三条直线平行,那么这两条直线也互相平行点到直线的垂线段叫做点到直线的距离过一点有且只有一条直线与已知直线平行若两条直线都与第三条直线垂直,则这两条直线互相平行A5个B4个C3
2、个D2个5直线,直线与,分别交于点,若,则的度数为( )ABCD6下列说法正确的是()A9的立方根是3B算术平方根等于它本身的数一定是1C2是4的一个平方根D的算术平方根是27如图,在中,交AC于点E,交BC于点F,连接DC,则的度数是( )A42B38C40D328在平面直角坐标系中,对于点P(x,y),我们把点P(-y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A4的伴随点为A4,这样依次得到点A1,A2,A3,An,若点A1的坐标为(2,4),点A2021的坐标为( )A(-3,3)B(-2,2)C(3,-1)D(2,4)二、填空题9若则 _.10若点P
3、(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_,b=_11如图,在ABC中,ACB90,AD是ABC的角平分线,BC10cm,BD:DC3:2,则点D到AB的距离为_12如图,已知ABCD,如果1100,2120,那么3_度13如图,四边形ABCD中,点M、N分别在AB、BC上,将BMN沿MN翻折,得FMN,若MFAD,FNDC,则D的度数为 _14如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有_个15已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标_.16如图,在平面直角坐标系中,三角形,三角
4、形,三角形都是斜边在轴上,斜边长分别为2,4,6,的等腰直角三角形若三角形的顶点坐标分别为,则按图中规律,点的坐标为_三、解答题17计算(每小题4分)(1) (2)(3) (4)+|2 | + ( -1 )2017 18求下列各式中的值:(1);(2);(3)19如图,BD平分ABC,F在AB上,G在AC上,FC与BD相交于点H,34180,试说明12(请通过填空完善下列推理过程)解:34180(已知),FHD4( )3FHD180(等量代换)FGBD( )1 (两直线平行,同位角相等)BD平分ABC,ABD (角平分线的定义)12(等量代换)20将ABO向右平移4个单位,再向下平移1个单位,
5、得到三角形ABO(1)请画出平移后的三角形ABO(2)写出点A、O的坐标21阅读下面文字,然后回答问题给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值例如:2.4的整数部分为2,小数部分为;的整数部分为1,小数部分可用表示;再如,2.6的整数部分为3,小数部分为由此我们得到一个真命题:如果,其中是整数,且,那么,(1)如果,其中是整数,且,那么_,_;(2)如果,其中是整数,且,那么_,_;(3)已知,其中是整数,且,求的值;(4)在上述条件下,求的立方根二十二、解答题22学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种
6、方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由(取3)二十三、解答题23已知:ABCD点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,GFBCEH(1)如图1,求证:GFEH;(2)如图2,若GEH,FM平分AFG,EM平分GEC,试问M与之间有怎样的数量关系(用含的式子表示M)?请写出你的猜想,并加以证明24如图1,为直线上一点,过点作射线,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方,将图1中的三角板绕点以每秒3的速度沿顺时针方向旋转一周(1)几秒后
7、与重合?(2)如图2,经过秒后,求此时的值(3)若三角板在转动的同时,射线也绕点以每秒6的速度沿顺时针方向旋转一周,那么经过多长时间与重合?请画图并说明理由(4)在(3)的条件下,求经过多长时间平分?请画图并说明理由25如图,已知直线ab,ABC100,BD平分ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P问1的度数与EPB的度数又怎样的关系?(特殊化)(1)当140,交点P在直线a、直线b之间,求EPB的度数;(2)当170,求EPB的度数;(一般化)(3)当1n,求EPB的度数(直接用含n的代数式表示)26
8、如图所示,在三角形纸片中,将纸片的一角折叠,使点落在内的点处.(1)若,_.(2)如图,若各个角度不确定,试猜想,之间的数量关系,直接写出结论.当点落在四边形外部时(如图),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,之间又存在什么关系?请说明(3)应用:如图:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是_.【参考答案】一、选择题1A解析:A【分析】同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直
9、线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案【详解】解:直线AD,BE被直线BF和AC所截,1与2是同位角,5与4是内错角,故选A【点睛】本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义2B【分析】根据平移的概念观察即可【详解】解:由“基本图案”经过旋转得到由“基本图案”经过平移得到由“基本图案”经过翻折得到不能由 “基本图案”经过平移得到故选:B【点睛】本题考查解析:B【分析】根据平移的概念观察即可【详解】解:由“基本图案”经过旋转得到由“基本图案”经过平移得到由“基本图案”经过翻折得到不能由 “基本图案”经过平移得到故选:B【点睛】本题考查平
10、移的概念,考查观察能力3B【分析】根据各象限内点的坐标特征解答即可【详解】解:点在第二象限,故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限4B【分析】根据平行线的性质和判定,点到直线距离定义一一判断即可【详解】解:两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;若两条直线都与第三条直线
11、垂直,则这两条直线互相平行,错误,条件是同一平面内 故选B【点睛】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义5B【分析】由对顶角相等得DFE=55,然后利用平行线的性质,得到BEF=125,即可求出的度数【详解】解:由题意,根据对顶角相等,则,;故选:B【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出6C【解析】【分析】利用立方根、平方根和算术平方根的定义进行判断即可.【详解】解:9的立方根是,故A项错误;算术平方根等于它本身的数是1和0,故B项错误;2是4的一个平方根,故C项正确;的算术平方根是,故D项错误;故选
12、C.【点睛】本题考查了平方根、算术平方根和立方根,熟练掌握各自的定义是解题的关键.7D【分析】由可得到与的关系,利用三角形的外角与内角的关系可得结论【详解】解:,故选:【点睛】本题考查了平行线的性质与三角形的外角性质,掌握“三角形的外角等于与它不相邻的两个内角和”是解决本题的关键8D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:A1的坐标为(2,4),解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2
13、021的坐标即可【详解】解:A1的坐标为(2,4),A2(3,3),A3(2,2),A4(3,1),A5(2,4),依此类推,每4个点为一个循环组依次循环,202145051,点A2021的坐标与A1的坐标相同,为(2,4)故选:D【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键二、填空题9【分析】根据平方与二次根式的非负性即可求解.【详解】依题意得2a+3=0.b-2=0,解得a=-,b=2,=【点睛】此题主要考查实数的性质,解题的关键是熟知实数的性质.解析:【分析】根据平方与二次根式的非负性即可求解.【详解】依题意得2a+
14、3=0.b-2=0,解得a=-,b=2,=【点睛】此题主要考查实数的性质,解题的关键是熟知实数的性质.10a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称
15、的点的坐标,难度不大114cm【详解】BC=10cm,BD:DC=3:2,BD=6cm,CD=4cm,AD是ABC的角平分线,ACB=90,点D到AB的距离等于DC,即点D到AB的距离等于4cm解析:4cm【详解】BC=10cm,BD:DC=3:2,BD=6cm,CD=4cm,AD是ABC的角平分线,ACB=90,点D到AB的距离等于DC,即点D到AB的距离等于4cm1240【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,即可确定出的度数【详解】解:如图:过作平行于,即,故答案为:40【解析:40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同
16、位角相等,同旁内角互补,得到,即可确定出的度数【详解】解:如图:过作平行于,即,故答案为:40【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键1395【分析】首先利用平行线的性质得出BMF100,FNB70,再利用翻折变换的性质得出FMNBMN50,FNMMNB35,进而求出B的度数以及得出D的度数解析:95【分析】首先利用平行线的性质得出BMF100,FNB70,再利用翻折变换的性质得出FMNBMN50,FNMMNB35,进而求出B的度数以及得出D的度数【详解】解:MFAD,FNDC,A100,C70,BMF100,FNB70,将BMN沿MN翻折,得FMN,FMNBMN50
17、,FNMMNB35,FB180503595,D360100709595故答案为:95【点睛】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出FMNBMN,FNMMNB是解题关键143【分析】根据无理数的估算、结合数轴求解即可【详解】解:在到4.1之间由2,3,4这三个整数故答案为:3.【点睛】本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解析:3【分析】根据无理数的估算、结合数轴求解即可【详解】解:在到4.1之间由2,3,4这三个整数故答案为:3.【点睛】本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键15(4,0)或(4,0)【详解】试题解
18、析:设C点坐标为(|x|,0) 解得:x=4所以,点C的坐标为(4,0)或(-4,0).解析:(4,0)或(4,0)【详解】试题解析:设C点坐标为(|x|,0) 解得:x=4所以,点C的坐标为(4,0)或(-4,0).16【分析】根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.【详解】解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边解析:【分析】根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.【详解】解:由题意得 A7A8A9的斜边长为8 ,A3A4A
19、5的斜边长为4,A5A6A7的斜边长为6A7A9=8,A5A7=6,A3A5=4A3A7= A5A7- A3A5=2A3A7= A7A9- A3A7=6又A3与原点重合A9的坐标为(6,0)故答案为:(6,0).【点睛】本题主要考查了坐标与图形的变化,解题的关键在于能够准确从图形中获取信息求解.三、解答题17(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根解析:(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即
20、可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.【详解】解:(1)原式=-3+4-3=-2 (2)原式=(3)原式=2+(-2)+1=1 (4)原式=2+2-1=3【点睛】本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.18(1);(2);(3)【分析】直接根据平方根的定义逐个解答即可【详解】解:(1),;(2),;(3),【点睛】此题主要考查了平方根的定义,熟练掌握平解析:(1);(2);(3)【分析】直接
21、根据平方根的定义逐个解答即可【详解】解:(1),;(2),;(3),【点睛】此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键19对顶角相等,FHD,同旁内角互补,两直线平行,ABD,两直线平行,同位角相等,2【分析】求出3+FHD=180,根据平行线的判定得出FGBD,根据平行线的性质得出1=ABD,解析:对顶角相等,FHD,同旁内角互补,两直线平行,ABD,两直线平行,同位角相等,2【分析】求出3+FHD=180,根据平行线的判定得出FGBD,根据平行线的性质得出1=ABD,根据角平分线的定义得出ABD=2即可【详解】解:3+4=180(已知),FHD=4(对顶角相等), 3+FH
22、D=180(等量代换), FGBD(同旁内角互补,两直线平行), 1=ABD(两直线平行,同位角相等), BD平分ABC, ABD=2(角平分线的定义), 1=2(等量代换), 故答案为:对顶角相等,FHD,同旁内角互补,两直线平行,ABD,两直线平行,同位角相等,2【点睛】本题主要考查了平行线的性质和判定,角平分线的定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键20(1)见解析;(2)A,O【分析】(1)分别作出A,B,O的对应点A,B,O即可(2)根据点的位置写出坐标即可【详解】解:(1)如图,ABO即为所求作(2)A(解析:(1)见解析;(2)A,O【分析】(1)分别作出A
23、,B,O的对应点A,B,O即可(2)根据点的位置写出坐标即可【详解】解:(1)如图,ABO即为所求作(2)A(2,1),O(4,1)【点睛】本题考查作图平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型21(1)2,;(2)3,;(3);(4)3【分析】(1)先估算的大小,再依据定义分别取整数部分和小数部分即可;(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算的大小,解析:(1)2,;(2)3,;(3);(4)3【分析】(1)先估算的大小,再依据定义分别取整数部分和小数部分即可;(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算的大小,分别求
24、得的值,再代入绝对值中计算即可;(4)根据前三问的结果,代入代数式求值,最后求立方根即可【详解】(1),故答案为:2,,;(2),故答案为:3,;(3),;(4),27的立方根为3,即的立方根为3【点睛】本题考查了实数的运算,无理数的估算,绝对值计算,立方根,理解题意是解题的关键二十二、解答题22选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答解析:选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求
25、出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案【详解】解:选择建成圆形草坪的方案,理由如下:设建成正方形时的边长为x米,由题意得:x2=81,解得:x=9,x0,x=9,正方形的周长为49=36,设建成圆形时圆的半径为r米,由题意得:r2=81解得:,r0,圆的周长=,建成圆形草坪时所花的费用较少,故选择建成圆形草坪的方案【点睛】本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键二十三、解答题23(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,
26、根据平行线的性质及角平分线的定义求解即可【详解析:(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解】(1)证明:,;(2)解:,理由如下:如图2,过点作,过点作,同理,平分,平分,由(1)知,【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键24(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出AON=60,结合旋转速度可得时间t;(3)设
27、AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出AON=60,结合旋转速度可得时间t;(3)设AON=3t,则AOC=30+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分MOB,由题意列出方程,解方程即可【详解】解:(1)303=10,10秒后ON与OC重合;(2)MNABBOM=M=30,AON+BOM=90,AON=60,t=603=20经过t秒后,MNAB,t=20秒(3)如图3所示:AON+BOM=90,BOC=BOM,三角板绕点O以每秒3的速度,射线OC也绕O点以每秒6
28、的速度旋转,设AON=3t,则AOC=30+6t,OC与OM重合,AOC+BOC=180,可得:(30+6t)+(90-3t)=180,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:AON+BOM=90,BOC=COM,三角板绕点O以每秒3的速度,射线OC也绕O点以每秒6的速度旋转,设AON=3t,AOC=30+6t,BOM+AON=90,BOC=COM=BOM=(90-3t),由题意得:180-(30+6t)=( 90-3t),解得:t=秒,即经过秒OC平分MOB【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之
29、间的关系求出角的度数是解题的关键25(1)EPB170;(2)当交点P在直线b的下方时:EPB20,当交点P在直线a,b之间时:EPB160,当交点P在直线a的上方时:EPB15020;(3)当解析:(1)EPB170;(2)当交点P在直线b的下方时:EPB20,当交点P在直线a,b之间时:EPB160,当交点P在直线a的上方时:EPB15020;(3)当交点P在直线a,b之间时:EPB180|n50|;当交点P在直线a上方或直线b下方时:EPB|n50|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:当交点P在直线b的下方时;当交点P在直线a,b之间时;当交点P在直
30、线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:当交点P在直线a,b之间时;当交点P在直线a上方或直线b下方时;【详解】解:(1)BD平分ABC,ABDDBCABC50,EPB是PFB的外角,EPBPFB+PBF1+(18050)170;(2)当交点P在直线b的下方时:EPB15020;当交点P在直线a,b之间时:EPB50+(1801)160;当交点P在直线a的上方时:EPB15020;(3)当交点P在直线a,b之间时:EPB180|n50|;当交点P在直线a上方或直线b下方时:EPB|n50|;【点睛】考查知识点:平行线的性质;三角形外角性质根据动点P的位置,分
31、类画图,结合图形求解是解决本题的关键数形结合思想的运用是解题的突破口26(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据题意,已知,可结合三角形内角和定理和折叠变换的性质求解;(2)先根据折叠得:ADE=ADE,AED=A解析:(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据题意,已知,可结合三角形内角和定理和折叠变换的性质求解;(2)先根据折叠得:ADE=ADE,AED=AED,由两个平角AEB和ADC得:1+2等于360与四个折叠角的差,化简得结果;利用两次外角定理得出结论;(3)由折叠可知1+2+3+4+5+6等于六边形的内角和减去(BGF+BFG)以
32、及(CDE+CED)和(AHL+ALH),再利用三角形的内角和定理即可求解【详解】解:(1),A=A=180-(65+70)=45,AED+ADE =180-A=135,2=360-(C+B+1+AED+ADE)=360-310=50;(2),理由如下由折叠得:ADE=ADE,AED=AED,AEB+ADC=360,1+2=360-ADE-ADE-AED-AED=360-2ADE-2AED,1+2=2(180-ADE-AED)=2A;,理由如下:是的一个外角.是的一个外角又(3)如图由题意知,1+2+3+4+5+6=720-(BGF+BFG)-(CDE+CED)-(AHL+ALH)=720-(180-B)-(180-C)-(180-A)=180+(B+C+A)又B=B,C=C,A=A,A+B+C=180,1+2+3+4+5+6=360【点睛】题主要考查了折叠变换、三角形、四边形内角和定理注意折叠前后图形全等;三角形内角和为180;四边形内角和等于360度