1、七年级下册成都数学期末试卷(Word版 含解析)一、选择题1在下列图形中,与是内错角的是( )ABCD2下列运动属于平移的是( )A汽车在平直的马路上行驶B吹肥皂泡时小气泡变成大气泡C铅球被抛出D红旗随风飘扬3在平面直角坐标系中,点P(5,4)位于( )A第一象限B第二象限C第三象限D第四象限4给出下列命题:等边三角形是等腰三角形;三角形的重心是三角形三条中线的交点;三角形的外角等于两个内角的和;三角形的角平分线是射线;三角形相邻两边组成的角叫三角形的内角;三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外其中正确命题的个数有( )A1个B2个C3个D4个5如图,直线,点分别在直线上
2、,P为两平行线间一点,那么等于( )ABCD6下列命题正确的是()A若ab,bc,则acB若ab,bc,则acC49的平方根是7D负数没有立方根7如图,ABCD,直线EF分别交AB、CD于点E、F,FH平分EFD,若1110,则2的度数为()A45B40C55D358如图,在平面直角坐标系中,已知点A(1,1),B(1,1),C(1,2),D(1,2)把一根长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABCDA的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A(1,0)B(0,1)C(1,1)D(1,2)二、填空题9已知实数x,y满
3、足+(y+1)2=0,则x-y的立方根是_10在平面直角坐标系中,点与点关于轴对称,则的值是_11如图,是的两条角平分线,则的度数为_12如图,平分,交于,若,则的度数是_13如图,有一条直的宽纸带,按图折叠,则的度数等于_14新定义一种运算,其法则为,则_15第二象限内的点满足,则点的坐标是_16如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,2),A5(5,2),A6(6,0),按这样的规律,则点A2021的坐标为 _三、解答题17计算下列各式的值:(1) (2)18求下列各式中的x值:(1)25x2-64=0(2)x3-3=19请补全推理依据:如图,已知:,求证:证明
4、:(已知)( )( )又(已知)( )( )( )20如图,三角形在平面直角坐标系中(1)请写出三角形各点的坐标;(2)求出三角形的面积;(3)若把三角形向上平移2个单位,再向左平移1个单位得到三角形,在图中画出平移后三角形21阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而2,于是可用来表示的小数部分请解答下列问题: (1)的整数部分是_,小数部分是_;(2)如果的小数部分为的整数部分为求的值二十二、解答题22已知在的正方形网格中,每个小正方形的边长为1(1)计算图中正方形的面积与边长(2)利用图中的正方形网格,作出面积为8的正方形
5、,并在此基础上建立适当的数轴,在数轴上表示实数和二十三、解答题23已知ABCD,ABE与CDE的角分线相交于点F(1)如图1,若BM、DM分别是ABF和CDF的角平分线,且BED100,求M的度数;(2)如图2,若ABMABF,CDMCDF,BED,求M的度数;(3)若ABMABF,CDMCDF,请直接写出M与BED之间的数量关系24阅读下面材料:小颖遇到这样一个问题:已知:如图甲,为之间一点,连接,求的度数她是这样做的:过点作则有因为所以所以所以即_ ;1小颖求得的度数为_ ;2上述思路中的的理由是_ ;3请你参考她的思考问题的方法,解决问题:已知:直线点在直线上,点在直线上,连接平分平分且
6、所在的直线交于点(1)如图1,当点在点的左侧时,若,则的度数为 ;(用含有的式子表示)(2)如图2,当点在点的右侧时,设,直接写出的度数(用含有的式子表示)25己知:如图,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ;(2)如图,若,作的平分线交于,交于,试说明; (3)如图,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.26如图,在中,与的角平分线交于点.(1)若,则 ;(2)若,则 ;(3)若,与的角平分线交于点,的平分线与的平分线交于点,的平分线
7、与的平分线交于点,则 .【参考答案】一、选择题1C解析:C【分析】根据内错角定义进行解答即可【详解】解:A、1与2是同位角,故此选项不合题意;B、1与2是同旁内角,故此选项不合题意;C、1与2是内错角,故此选项符合题意;D、1与2不是内错角,此选项不合题意;故选:C【点睛】此题主要考查了内错角,关键是掌握内错角的边构成“Z“形2A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车
8、在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;C、铅球被抛出是旋转与平移组合,故C选项不符合;D、随风摆动的红旗,不属于平移,故D选项不符合故选:A【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等3B【分析】根据各象限内点的坐标特征解答【详解】解:点P(5,4)位于第二象限故选:B【点睛】本题主要考查点的坐标,熟练掌握点的坐标象限的符合特征:第一象限为“+、+”,第二象限为“-,+”,第三象限为“-,-”,第四象限为“+,-”是解题的关键4B【分析】根据等
9、边三角形的性质可以判断,根据三角形重心的定义可判断,根据三角形内角和定理可判断,根据三角形角平分线的定义可以判断,根据三角形的内角的定义可以判断,根据三角形的高的定义以及直角三角形的高可以判断【详解】等边三角形是等腰三角形,正确;三角形的重心是三角形三条中线的交点,正确;三角形的外角等于不相邻的两个内角的和,故不正确;三角形的角平分线是线段,故不正确;三角形相邻两边组成的角且位于三角形内部的角,叫三角形的内角,错误;三角形的高所在的直线交于一点,这一点可以在三角形内或在三角形外或者在三角形的边上正确的有,共计2个,故选B【点睛】本题考查了命题的判断,等边三角形的性质,三角形的重心,三角形的内角
10、和定理,三角形的角平分线,三角形的内角的定义,三角形垂心的位置,掌握相关性质定理是解题的关键5A【分析】过点P作PEa则可得出PEab,结合“两直线平行,内错角相等”可得出2=AMP+BNP,再结合邻补角的即可得出结论【详解】解:过点P作PEa,如图所示PEa,ab,PEab,AMP=MPE,BNP=NPE,2=MPE+NPE=AMP+BNP1+AMP=180,3+BNP=180,1+2+3=180+180=360故选:A【点睛】本题考查了平行线的性质以及角的计算,解题的关键是找出2=AMP+BNP本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键6B【解
11、析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答【详解】选项A,由ab,bc,则ac,可得选项A错误;选项B, 若ab,bc,则ac,正确;选项C,由49的平方根是7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答7D【分析】根据对顶角相等求出3,再根据两直线平行,同旁内角互补求出DFE,然后根据角平分线的定义求出DFH,再根据两直线平行,内错角相等解答【详解】解:1=110,3=1=110,ABCD,DFE=180-3=180-110=70,HF平分EFD,D
12、FH=DFE=70=35,ABCD,2=DFH=35故选:D【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键8B【分析】先求出四边形ABCD的周长为10,得到202110的余数为1,由此即可解决问题【详解】解:A(1,1),B(1,1),C(1,2),D(1,2),四边形ABCD的周长为1解析:B【分析】先求出四边形ABCD的周长为10,得到202110的余数为1,由此即可解决问题【详解】解:A(1,1),B(1,1),C(1,2),D(1,2),四边形ABCD的周长为10,202110的余数为1,又AB=2,细线另一端所在位置的点在
13、A处左面1个单位的位置,坐标为(0,1)故选:B【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出四边形ABCD的周长,属于中考常考题型二、填空题9【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是【点睛】本题考查的是解析:【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是【点睛】本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的
14、关键104【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【点睛】本题考查了关于x轴对称的解析:4【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【点睛】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.11140【分析】ABC中,已知A即可得到ABC与ACB的和,而BO和CO分别是ABC,ACB的两条角平分线,即可求得OBC与OCB的度数,根据三角形的内角和定理即可求
15、解【详解析:140【分析】ABC中,已知A即可得到ABC与ACB的和,而BO和CO分别是ABC,ACB的两条角平分线,即可求得OBC与OCB的度数,根据三角形的内角和定理即可求解【详解】ABC中,ABCACB180A18010080,BO、CO是ABC,ACB的两条角平分线OBCABC,OCBACB,OBCOCB(ABCACB)40,在OBC中,BOC180(OBCOCB)140故填:140【点睛】本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义1225【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:ABCD,1=ECD,CE平分ACD,ACD=50,=25,
16、1=25,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:ABCD,1=ECD,CE平分ACD,ACD=50,=25,1=25,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.1375【分析】由图形可得ADBC,可得CBF=30,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案【详解】解:ADBC,CBF=DEF=30,AB为解析:75【分析】由图形可得ADBC,可得CBF=30,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案【详解】解:ADBC,CBF=DEF
17、=30,AB为折痕,2+CBF=180,即2+30=180,解得=75故答案为:75【点睛】本题考查了平行线的性质,图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键14【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解解析:【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解15(-9,2)【分析】点在第二象限内,那么
18、其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标【详解】点在第二象限,又,点的坐标是【点睛】本题主要考查解析:(-9,2)【分析】点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标【详解】点在第二象限,又,点的坐标是【点睛】本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键16(2021,2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及20216所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标【详解解析:(2021,2)【
19、分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及20216所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标【详解】解:观察发现,每6个点形成一个循环,A6(6,0),OA66,202163365,点A2021的位于第337个循环组的第5个,点A2021的横坐标为6336+52021,其纵坐标为:2,点A2021的坐标为(2021,2)故答案为:(2021,2)【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解三、解答题17(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先
20、进行乘法运算,同时求解的立方根,再合并即可【详解】解:(1) (2) 【点睛】本题考解析:(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可【详解】解:(1) (2) 【点睛】本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键18(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可解析:(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,
21、再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可得【详解】解:(1)25x2-64=0,25x2=64,则x2=,x=;(2)x3-3=,x3=,则x=故答案为:(1)x=;(2)x=.【点睛】本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x2=a(a为常数)的形式及平方根、立方根的定义19同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可【详解】证明:12180解析:同旁内角互补,两直线平行;两
22、直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可【详解】证明:12180(已知),ADEF(同旁内角互补,两直线平行),3D(两直线平行,同位角相等),又3A(已知),DA(等量代换),ABCD(内错角相等,两直线平行),BC(两直线平行,内错角相等)故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【点睛】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键20(1),;(2)7;(3)见解析【分析】(1)根据平面直角坐标系
23、中点的位置,即可求解;(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;(3)根据点的平移规则,求得三点坐标解析:(1),;(2)7;(3)见解析【分析】(1)根据平面直角坐标系中点的位置,即可求解;(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;(3)根据点的平移规则,求得三点坐标,连接对应线段即可【详解】解:(1)根据平面直角坐标系中点的位置,可得:,;(2)三角形的面积;(3)三角形向上平移2个单位,再向左平移1个单位得到三角形可得,连接,三角形如图所示:【点睛】此题考查了平面直角坐标系中点的坐标以及平移,熟练掌握平面直角坐标系中点的坐标以及平移规则是解
24、题的关键21(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可【详解】(1)56,的整数部分是5,小数部分是-5,故解析:(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可【详解】(1)56,的整数部分是5,小数部分是-5,故答案为:5;-5;(2)34,a-3,34,b3,-3+3-=0【点睛】本题考查了估算无理数的大小,能估算出、的范围是解此题的关键二十二、解答题22(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减
25、去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论【详解】解:(1)正方形的面积为44431=10则正方形的边长为;(2)如下图所示,正方形的面积为44422=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点正方形的边长为弧与数轴的左边交
26、点为,右边交点为,实数和在数轴上如图所示【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键二十三、解答题23(1)65;(2);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+解析:(1)65;(2);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+CDF=130,从而得到BFD的度数,再根据角平分线的定义和三角形外角的性质可求M的度
27、数;(2)先由已知得到ABE=6ABM,CDE=6CDM,由(1)得ABE+CDE=360-BED,M=ABM+CDM,等量代换即可求解;(3)由(2)的方法可得到2nM+BED=360【详解】解:(1)如图1,作,连结,和的角平分线相交于,、分别是和的角平分线,;(2)如图1,与两个角的角平分线相交于点,;(3)由(2)结论可得,则【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质24;2平行于同一条直线的两条直线平行;3(1);(2)【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及
28、1的结论证明即可得到答案;(2)根据B解析:;2平行于同一条直线的两条直线平行;3(1);(2)【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据BE平分平分求出,过点E作EFAB,根据平行线的性质求出BEF=,再利用周角求出答案【详解】1、过点作则有因为所以所以所以即;故答案为:;2、过点作则有因为所以EFCD(平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)BE平分平分,过点E作EFAB,由1可得BED=,BED=,故答案为:;(2)BE平分平分,过点E作EFAB,则ABE=
29、BEF=,EFCD,【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键25(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为BCD的高为OC,所以SBCD=CDOC,(2)利用CFE+CBF=90,OBE+OEB=90,求出CEF=解析:(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为BCD的高为OC,所以SBCD=CDOC,(2)利用CFE+CBF=90,OBE+OEB=90,求出CEF=CFE(3)由ABC+ACB=2DAC,H+HCA=DAC,ACB=2HCA,求出ABC=2H,即可得答案详解
30、:(1)SBCD=CDOC=32=3(2)如图,ACBC,BCF=90,CFE+CBF=90直线MN直线PQ,BOC=OBE+OEB=90BF是CBA的平分线,CBF=OBECEF=OBE,CFE+CBF=CEF+OBE,CEF=CFE(3)如图,直线lPQ,ADC=PADADC=DACCAP=2DACABC+ACB=CAP,ABC+ACB=2DACH+HCA=DAC,ABC+ACB=2H+2HCACH是,ACB的平分线,ACB=2HCA,ABC=2H,=点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解26(1)110(2)(90 +n)(3)90+n【分析】(1)根
31、据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是ABC与ACB的角平解析:(1)110(2)(90 +n)(3)90+n【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是ABC与ACB的角平分线,用n的代数式表示出OBC与OCB的和,再根据三角形的内角和定理求出BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)A=40,ABC+ACB=140,点O是AB故答案为:110;C与ACB的角平分线的交点,OBC+OCB=70,BOC=110(2)A=n,ABC+ACB=180-n,BO、CO分别是ABC与ACB的角平分线,OBC+OCBABC+ACB(ABC+ACB)(180n)90n,BOC180(OBC+OCB)90+n故答案为:(90+n);(3)由(2)得O90+n,ABO的平分线与ACO的平分线交于点O1,O1BCABC,O1CBACB,O1180(ABC+ACB)180(180A)180+n,同理,O2180+n,On180+ n,O2017180+n,故答案为:90+n【点睛】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180