资源描述
人教版六年级上册数学应用题附答案
1.水果超市昨天购进水果,其中苹果占。今天卖出了购进苹果的,卖出多少千克苹果?
2.甲、乙两车同时从两地相对开出,经过2h相遇。甲车每时行80km,乙车的速度比甲快。两地相距多少千米?
3.超音速飞机的飞行速度可达到1500千米/时,磁悬浮列车的运行速度比它慢。磁悬浮列车的速度是多少?
4.一片树林有梨树150棵,桃树的棵数是梨树的,桃树有多少棵?
5.某修路队修一条长320米的公路,其中第一天修了,第二天修的比第一天的还多50米,两天一共修了多少米?
6.有面粉250千克,大米比面粉多,大米比面粉多多少千克?(只列式,不计算。)
7.水果店运来210筐水果,第一天卖出总数的,第二天卖出余下的。水果店里还剩下多少筐水果?
8.文具店运来300本数学练习本,运来的英语本是数学练习本的,运来的作文本是英语本的,文具店运来多少本作文本?
9.果园里有杏树360棵,苹果树的棵数比杏树多。苹果树有多少棵?
10.据了解,火车票价是按全程票价×的方法确定的。已知A站与H站之间的总里程数是1500千米,全程票价为600元。如图是各站之间的里程数:
(1)如果从D站上车,F站下车,票价应是多少元?
(2)阿姨从B站上车,票价为240元,她的目的地是哪站?
11.王乐家果园里枇杷树是桃树的,桃树是李树的,李树有120棵,王乐家一共有枇杷树多少棵?
12.三个同学跳绳。小明跳了180下,小强跳的下数是小明跳的,小亮跳的下数是小强跳的。小亮跳了多少下?
13.学校体育室有120个排球,足球的个数是排球的,篮球的个数是足球的,篮球有多少个?(先画图表示出三种球数量之间的关系,再列式解答)
14.《庄子•天下篇》中有一句话:“一尺之梗,日取其半,万世不竭。”意思就是:一根一尺(尺,中国古代长度单位)长的木棒,今天取它的一半,即,明天取它一半的一半,后天取它一半的一半的一半……这样取下去,永远也取不完。这根木棒是一个长度有限的物体,但它却可以无限地分割下去。假如一根木棒刚好长4米,照这样的取法,第4天取的长度是多少米?
15.小红有48枚邮票,小新的邮票数是小红的,小明的邮票数是小新的,小明有多少枚邮票?
16.学校教导处有800张白纸,第一天用去了,第二天用去的是第一天的,第二天用去多少张白纸?
17.一本故事书共240页,晓晓第一周看了全书的,第二周看了剩下的还多10页,这时还剩多少页没看?
18.如下图。小华每天喝2杯这样的牛奶,他在整个九月份通过喝牛奶可以摄取钙质多少克?
19.一本童话书有160页,胡兵第一周读了这本书的,第二周读了余下的,第二周读了多少页?
20.某企业助力美丽乡村建设,为和平村修建一条公路。该工程如果由甲工程队单独修,需要15天,如果由乙工程队单独修,需要20天。现由甲、乙两个工程队合修,8天可以修完这条公路吗?
21.在直角三角形ABC中,这个三角形的面积是90平方厘米,D是BC的中点,E是AD中一点,AE与ED的比是2∶1,求阴影部分的面积?
22.当你开车开到路程时,你油箱的油已由原来的满箱到只有箱。问:是否能用这些油到达终点?请你尝试说说理由。
23.汽车往返甲、乙两地.去的时候平均每小时行50千米,返回的时候平均每小时行60千米,汽车往返两地平均每小时行多少千米?
24.甲、乙两车分别从A、B两地同时开出,相对而行,9小时后相遇,然后又各自向前行驶了4小时,这时甲车距B城还有224千米,乙车距A城还有336千米。求A、B两地相距多少千米?
25.某校六年级学生在青少年科技活动中心参加机器人竞赛,分成甲、乙两个组,甲、乙两组人数比是7∶8,如果从乙组调8人到甲组,则甲、乙两组的人数比是5∶4,参加机器人比赛的一共多少人?
26.甲乙两仓库共存粮54吨,甲仓用了,乙仓用了后,剩下的两仓一样多,原来两仓各存粮多少吨?
27.六(1)班女生人数比全班人数的多2人,男生有22人,全班有多少人?
28.涛涛读一本故事书,第一天读了这本书的,第二天读了这本书的,这时还剩95页没有读。这本故事书共有多少页?
29.一条公路长360米,甲、乙两支施工队同时从公路的两端往中间铺柏油,甲队的施工速度是乙队的,4天后这条公路全部铺完.甲、乙两队每天分别铺柏油路多少米?(用方程解决)
30.甲、乙两人共同完成一项工程。甲、乙一起做6天完成了工程的,剩下的由甲独做8天完成,按完成的工作量分配工资,甲获得工资7000元,乙应得工资多少元?
31.一辆卡车和一辆客车分别从甲、乙两城同时出发,相向而行,卡车到达乙城后立即返回,客车到达甲城后也立即返回,已知卡车和客车的速度比为,两车第一次相遇地点距离第二次相遇地点24千米,求甲、乙两城相距多少千米?
32.学校买来一批书,分给高年级后,剩下的按4∶3的比分给中年级和低年级。已知中年级分得240本,这批书一共有多少本?
33.甲乙两城相距450千米,两辆汽车同时从甲乙两城相对开出,3小时后相遇,已知快车与慢车的速度比是,那么快车比慢车总共多行驶了多少千米?
34.学习与思考:问题探究。
如图,已知四边形ABCD,E、F 分别为AD、BC 的中点,连接BE、DF,四边形EBFD 与四边形ABCD 的面积之比是多少?
35.用一根240厘米的铁丝制作成一个长方体框架,长、宽、高的比是5∶3∶4,求这个长方体框架的体积是多少立方厘米?
36.某商场需要制作一块广告牌,请来师徒两位工人。已知师傅单独完成需8天,徒弟单独完成需12天,现由师傅先做3天,再由两人合作。
(1)还需要几天才能完成任务?
(2)完成后两人共得工钱1600元,如果按两人完成的工作量分配工钱,那么师徒两人各应得工钱多少元?
37.学校新购买了1470本新书分给四、五、六年级,四年级分得全部新书的,其余新书按3∶4的比分给五、六年级。五、六年级各分得多少本新书?
38.甲、乙两袋淀粉的质量比是5∶2,从甲袋中取出130g放入乙袋中,甲乙两袋淀粉的质量比是6∶5,原来甲袋中有淀粉多少g?
39.两根水泥柱,埋入地下部分都是 m.第一根露出地面的部分是全长的,第二根的长度正好是第一根的.这两根水泥柱各长多少米?
40.甲、乙两车同时从A、B两地出发,相向而行,经过5小时相遇,相遇后两车又行驶了3小时,这时甲车离B地还有230千米,乙车离A地还有160千米,求A、B两地的距离是多少千米?
41.为了丰富课后服务的活动内容,某校准备开设民乐社团。为了了解学生的喜好情况,学校对部分学生进行了调查,并制作了两个不完整的统计图,请完成以下问题。
(1)这次调查的人数一共有( )人。
(2)请把条形统计图和扇形统计图补充完整。
(3)如果学校有1500人,参加古筝社团有多少人?
42.幸福小区实行垃圾分类,物业管理员统计了一个星期中居民垃圾分类的情况,统计如图。
(1)如图,该小区产生( )最多,占( ),另外,有害垃圾占( )。
(2)这个星期该小区共产生了42吨垃圾,其中可回收垃圾有多少吨?
43.如图是乐乐根据商店购进的蔬菜而画出来的扇形统计图,请根据统计图回答问题。
(1)请在统计图中填出茄子所占的百分比。
(2)如果茄子有48千克,那么购进( )千克蔬菜,黄瓜有( )千克,青菜有( )千克。
(3)茄子的质量是黄瓜的( )%,是青菜的。
44.下面是某校六年级学生去年体育达标情况如图:
(1)完成下面的统计表。
项目
优秀
良好
达标
未达标
人数
60
(2)良好的人数比优秀的人数多百分之几?
45.下图是小红家月份支出情况统计图:
(1)小红家月份哪一项支出最多?
(2)如果教育支出是元,那么小红家月份的总支出是多少元?
46.王阿姨上个月的工资,分成了如下五个部分。
类别
伙食费
水电费
还贷款
储蓄
其他
百分比
22%
10%
36%
16%
16%
(1)请在上图中把王阿姨上个月的各项费用情况填完整。
(2)已知王阿姨的还贷款比伙食费多用了770元。请问王阿姨上个月的工资共多少元?
47.下面两幅统计图,反映的是在毕业复习阶段,甲、乙两位同学每天在家学习的时间分配情况(左下图)和阶段性检测的成绩提高情况(右下图)。
观察上面两幅图,解决下列问题。(除不尽的百分号前面保留一位小数)
(1)计算乙在家看书和交流的时间各占总学习时间的百分数,再填入下面的统计图。
(2)从折线统计图看出谁的成绩提高得快?他第五次成绩比第三次提高了百分之几?
(3)从条形统计图中可以看出( )的思考时间多一些,你认为今后要提高成绩,复习的好办法有:_________________________;________________________________。(至少写两条)
48.汽车盲区是造成交通事故的罪魁祸首之一,它是指驾驶员位于正常驾驶座位置,其视线被车体遮挡而不能直接观察到的那部分区域。有一种汽车盲区叫做内轮差盲区,内轮差是车辆在转弯时前内轮转弯半径与后内轮转弯半径之差;由于内轮差的存在而形成的这个区域(下图所示)是司机视线的盲区。卡车,货车等车身较长的大型车在转弯时都会产生这种盲区,为了解决这个问题,现在许多路口都开始设置“右转危险区”标线。
下图是我区某一路口“右转危险区”的示意图,经过测址后内轮转弯半径米,前内轮转弯半径米,圆心角,求此“右转危险区”的面积和周长。
49.下图中等腰直角三角形的两条直角边正好是半径,三角形的面积是20平方厘米,图中空白部分的面积是多少平方厘米?
50.小明观察到某赛车场赛道和学校操场跑道形状一样,于是测量了相关数据如下:直道的长度85.96m,半圆形跑道的直径72.6m。某型号赛车左、右轮的距离是2m,转弯时,外侧的轮子比内侧的轮子要多行一些路。当该赛车在上述赛道上跑一圈时,外轮比内轮多行多少米?
51.某游乐场门票价格:成人20元,儿童半价。买家庭套票(两个大人加一个孩子)可节约20%,家庭套票的价格是多少元?
52.摆一摆,找规律.
摆第n个图形需要用多少根火柴棒?
53.仔细观察下面的点子图,看看有什么规律。
(1)根据上面图形与数的规律接着画一画,填一填。
(2)探索填空:按照上面的规律,第6个点子图中的点子数是 ;第10个点子图中的点子数是 。
54.海安某步行街要铺设一条人行道,人行道长400米,宽1.6米。现在用边长都是0.4米的红、黄两种正方形地砖铺设(如图是铺设的局部图示)。
(1)请帮忙算一算,铺设这条人行道一共需多少块地砖?(不计损耗)
(2)铺设这条人行道一共需要多少块红色地砖?(不计损耗)
55.请在横线上画出第4幅图,并算出第4幅图有多少个正方形。
56.用同样长的小棒摆正方形,如图:
(1)填一填。(每空1分,共2分)
正方形个数
1
2
3
4
5
…
小棒根数
1+3×1
1+3×2
1+3×3
…
(2)这样摆7个正方形,需要多少根小棒?
(3)现有31根小棒,能摆多少个这样的正方形?
57.如图,堆三角形积木。
①如果下层放6个,一共需要多少个三角形?
②如果有169个三角形积木块,下层应放几个?
58.先画出第5个图形并填空。再想后面的第10个方框里有( )个点,第51个方框里有( )个点。
1 1+4 1+4×2 1+4×3 ( )
59.根据下列信息回答问题.
印刷厂的纸是以“令”来卖的.一令是500张.最普通的纸张是A4纸.A系列纸张是以A0尺寸为基础的,而A4纸是其中的一部分.一张A0纸的规格为1189毫米×841毫米,差不多有1平方米.如右图所示,A1纸是A0纸的一半,A2纸是A1纸的一半,A3纸是A2纸的一半,等等.
(1)需要多少张A4纸才能覆盖住一张A0纸?( )
①8 ②16 ③32 ④64
(2)—张A5纸较长那条边的长度大约是多少?( )
①420mm ②297mm ③210mm ④149mm
60.通过计算并观察①②③小题,猜想出④的结果,写出你的发现,并用图形进行说明。
①
②+
③…
则:④
发现:____________________________________________________
说明:
61.一件衣服按目前的定价出售可以盈利30%,如果降价80元之后再出售则能盈利10%,这件衣服的进价是多少元?
62.修路队修一条公路,第一天修了全长的40%,第二天修了全长的,第二天比第一天多修了30千米,这条公路全长多少千米?
63.有一款手机原价4500元,现在商店进行降价促销活动。李叔叔是商店降价促销活动时第21位购买该款手机的顾客。他买这款手机实际付了多少钱?
64.修路队修一段路,第一天修了这段路全长的45%,第二天修了这段路全长的。
(1)两天共修了510米,这段路全长多少米?
(2)第一天比第二天多修30米,这段路全长多少米?
65.甲、乙两车同时从A、B两地相向而行,甲车行了全程的,乙车行的与全程的比是,此时甲车比乙车正好多行5千米,A、B两地相距多少千米?
66.小敏坚持每天阅读。有一本书共120页,第一天读了全书的,第二天读了余下的,还剩多少页没读?
67.小明看一本故事书,已经看了30%,剩下的比已看的多48页,这本故事书共有多少页?请先在下面的线段图上把信息和问题补充完整,再列式解答。
68.长江小学原来平均每天产生垃圾50千克,自从开展分类投放垃圾后,现在平均每天少产生20%的垃圾,现在平均每天产生垃圾多少千克?
69.工程队修一条公路,第一天修了全长的,第二天修了全长的40%,还剩240m没修,这条公路一共有多少米?
70.通过观察,利用字母表示出图形的边长和面积。
(1)大正方形的边长可表示出为:( ) ;大正方形的面积=边长2,用字母表示大正方形的面积S是:( ) ;
(2)两个小长方形①和②,两个小正方形③和④,这四个图形的面积和是多少?
(3)通过上面两个问题的探索,你发现了什么?你能用文字和字母分别表述吗?
【参考答案】
1.90千克
【解析】
根据苹果占总水果的比重,先利用乘法将苹果的重量计算出来,再利用乘法求出今天卖出的苹果的数量即可。
288××
=108×
=90(千克)
答:今天卖出90千克苹果。
【点睛】
本
解析:90千克
【解析】
根据苹果占总水果的比重,先利用乘法将苹果的重量计算出来,再利用乘法求出今天卖出的苹果的数量即可。
288××
=108×
=90(千克)
答:今天卖出90千克苹果。
【点睛】
本题考查了分数乘法的应用,求一个数的几分之几,用乘法。
2.360千米
【解析】
乙车的速度=甲车速度×,求出乙车速度,再根据相遇路程=相遇时间×相遇速度,求出两地距离即可。
=100(千米)
(80+100)×2
=180×2
=360(千米)
答:两
解析:360千米
【解析】
乙车的速度=甲车速度×,求出乙车速度,再根据相遇路程=相遇时间×相遇速度,求出两地距离即可。
=100(千米)
(80+100)×2
=180×2
=360(千米)
答:两地相距360千米。
【点睛】
本题考查分数乘法、相遇问题,解答本题的关键是掌握相遇问题的数量关系。
3.500千米/时
【解析】
磁悬浮列车的运行速度比超音速飞机的飞行速度少,把超音速飞机的飞行速度看作单位“1”, 磁悬浮列车的速度是它的(1-),用超音速飞机的飞行速度乘这个分率,可求出磁悬浮列车的运
解析:500千米/时
【解析】
磁悬浮列车的运行速度比超音速飞机的飞行速度少,把超音速飞机的飞行速度看作单位“1”, 磁悬浮列车的速度是它的(1-),用超音速飞机的飞行速度乘这个分率,可求出磁悬浮列车的运行速度。
磁悬浮列车的速度:
1500×(1-)
=1500×
=500(千米/时)
答:磁悬浮列车的速度是500千米/时。
【点睛】
找准单位“1”的量是解此题的关键。
4.225棵
【解析】
桃树的棵数=梨树的棵数×,把梨树的棵数代入计算即可。
150×=225(棵)
答:桃树有225棵。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
解析:225棵
【解析】
桃树的棵数=梨树的棵数×,把梨树的棵数代入计算即可。
150×=225(棵)
答:桃树有225棵。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
5.200米
【解析】
第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+50米,最后计算两天修路的长度之和。
第一天修的长度:320×=120(米)
第二天修的长度:120×+50
解析:200米
【解析】
第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+50米,最后计算两天修路的长度之和。
第一天修的长度:320×=120(米)
第二天修的长度:120×+50
=30+50
=80(米)
120+80=200(米)
答:两天一共修了200米。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
6.250×
【解析】
由题意,可把面粉的重量看作单位“1”,又知大米比面粉多,就是说大米比面粉多的重量占面粉的,要计算大米比面粉多多少千克可列式:250×。
250×=62.5(千克)
答:大米比面粉
解析:250×
【解析】
由题意,可把面粉的重量看作单位“1”,又知大米比面粉多,就是说大米比面粉多的重量占面粉的,要计算大米比面粉多多少千克可列式:250×。
250×=62.5(千克)
答:大米比面粉多62.5千克。
【点睛】
解答本题必须明确,单位“1”是哪个量,比较量又是谁,然后结合具体题意,按照一定的数量关系列式即可。
7.40筐
【解析】
用1减去,再将差乘,求出第二天卖出的占总数的几分之几。据此,再利用减法求出剩下的水果占总数的几分之几,最后将其乘210,求出水果店里还剩下多少筐水果。
(1-)×
=×
=
(1-
解析:40筐
【解析】
用1减去,再将差乘,求出第二天卖出的占总数的几分之几。据此,再利用减法求出剩下的水果占总数的几分之几,最后将其乘210,求出水果店里还剩下多少筐水果。
(1-)×
=×
=
(1--)×210
=×210
=40(筐)
答:水果店里还剩下40筐水果。
【点睛】
本题考查了分数乘法的应用,求一个数的几分之几是多少,用乘法。
8.200本
【解析】
先把数学练习本的数量看作单位“1”,用300×求得英语本的数量,再把的英语本数量看作单位“1”,用240×求得作文本的数量。
300×=240(本)
240×=200(本)
答:
解析:200本
【解析】
先把数学练习本的数量看作单位“1”,用300×求得英语本的数量,再把的英语本数量看作单位“1”,用240×求得作文本的数量。
300×=240(本)
240×=200(本)
答:文具店运来200本作文本。
【点睛】
本题考查求一个数的几分之几是多少,用乘法计算。
9.504棵
【解析】
把杏树的棵数看作单位“1”,苹果树的棵数=杏树的棵数×(1+),据此解答。
360×(1+)
=360×
=504(棵)
答:苹果树有504棵。
【点睛】
已知一个数,求比这个数
解析:504棵
【解析】
把杏树的棵数看作单位“1”,苹果树的棵数=杏树的棵数×(1+),据此解答。
360×(1+)
=360×
=504(棵)
答:苹果树有504棵。
【点睛】
已知一个数,求比这个数多几分之几的数是多少,用分数乘法计算。
10.(1)200元;
(2)E站
【解析】
(1)先求出从D站到F站的实际乘车里程数,然后利用“火车票价=全程票价×”求出结果;
(2)先求出阿姨的票价占全程票价的分率,再利用“所行路程=全程×分率”求
解析:(1)200元;
(2)E站
【解析】
(1)先求出从D站到F站的实际乘车里程数,然后利用“火车票价=全程票价×”求出结果;
(2)先求出阿姨的票价占全程票价的分率,再利用“所行路程=全程×分率”求出阿姨实际乘车的里程数,最后加上300千米找出对应的目的地即可。
(1)实际乘车里程数为:1200-700=500(千米)
600×
=600×
=200(元)
答:票价应是200元。
(2)实际票价占全程票价的分率:240÷600=
实际乘车里程数:1500×=600(千米)
300+600=900(千米)
由图可知,阿姨的目的地是E站。
答:她的目的地是E站。
【点睛】
解答此题的关键是理解题目中的已知关系式“火车票价=全程票价×(实际乘车的里程数÷总里程数)”。
11.32棵
【解析】
根据求一个数的几分之几是多少,用乘法先求出桃树的棵树,然后再根据乘法求出枇杷树的棵树即可。
120××
=80×
=32(棵)
答:王乐家一共有枇杷树32棵。
【点睛】
本题考查求
解析:32棵
【解析】
根据求一个数的几分之几是多少,用乘法先求出桃树的棵树,然后再根据乘法求出枇杷树的棵树即可。
120××
=80×
=32(棵)
答:王乐家一共有枇杷树32棵。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解题的关键。
12.100下
【解析】
由题意可知“小明跳的个数×=小强跳的个数”,由此求出小强跳的个数,即120×,再根据“小强跳的个数×=小亮跳的个数”,进行解答即可。
180××
=150×
=100(下);
答
解析:100下
【解析】
由题意可知“小明跳的个数×=小强跳的个数”,由此求出小强跳的个数,即120×,再根据“小强跳的个数×=小亮跳的个数”,进行解答即可。
180××
=150×
=100(下);
答:小亮跳了100下。
【点睛】
熟练掌握分数乘法的意义(求一个数的几分之几是多少,用“这个数×几分之几”)是解答本题的关键。
13.画图见详解;40个
【解析】
根据足球的个数是排球的,可知是以排球为单位“1”,求一个数的几分之几用乘法,足球的个数为:120×=60(个),同理求出篮球的个数:60×=40(个)据此解答即可。
根
解析:画图见详解;40个
【解析】
根据足球的个数是排球的,可知是以排球为单位“1”,求一个数的几分之几用乘法,足球的个数为:120×=60(个),同理求出篮球的个数:60×=40(个)据此解答即可。
根据分析画图如下:
120××
=60×
=40(个)
答:篮球有40个。
【点睛】
此题考查的是分数应用题,解题时注意单位“1”。
14.米
【解析】
将木棒长度看作单位“1”,用木棒长度连续乘4次即可。
4××××=(米)
答:第4天取的长度是米。
【点睛】
关键是确定单位“1”,整体数量×部分对应分率=部分数量。
解析:米
【解析】
将木棒长度看作单位“1”,用木棒长度连续乘4次即可。
4××××=(米)
答:第4天取的长度是米。
【点睛】
关键是确定单位“1”,整体数量×部分对应分率=部分数量。
15.30枚
【解析】
小新的邮票数=小红的邮票数×,小明的邮票数=小新的邮票数×,据此解答。
48××=30(枚)
答:小明有30枚邮票。
【点睛】
已知一个数,求这个数的几分之几用乘法。
解析:30枚
【解析】
小新的邮票数=小红的邮票数×,小明的邮票数=小新的邮票数×,据此解答。
48××=30(枚)
答:小明有30枚邮票。
【点睛】
已知一个数,求这个数的几分之几用乘法。
16.125张
【解析】
将白纸总数量看作单位“1”,白纸总数量×第一天用去的对应分率×第二天用去的对应分率=第二天用去的数量。
800××=125( 张)
答:第二天用去125张白纸。
【点睛】
关键是
解析:125张
【解析】
将白纸总数量看作单位“1”,白纸总数量×第一天用去的对应分率×第二天用去的对应分率=第二天用去的数量。
800××=125( 张)
答:第二天用去125张白纸。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
17.140页
【解析】
将全书页数看作单位“1”,全书页数×第一周看的对应分率=第一周看的页数;第一周剩下页数×第二周看的对应分率+10页=第二周看的页数;全书页数-第一周看的页数-第二周看的页数=剩下
解析:140页
【解析】
将全书页数看作单位“1”,全书页数×第一周看的对应分率=第一周看的页数;第一周剩下页数×第二周看的对应分率+10页=第二周看的页数;全书页数-第一周看的页数-第二周看的页数=剩下页数。
240×=40(页)
240×(1-)×+10
=240××+10
=50+10
=60(页)
240-40-60=140(页)
答:这时还剩140页没看。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
18.18克
【解析】
由题意可知,1杯牛奶含克钙质,九月份一共30天,每天喝2杯,所以九月份一共喝30×2=60杯,再乘一杯牛奶还有钙质的质量即可。
30×2×
=60×
=18(克)
答:他在整个九月
解析:18克
【解析】
由题意可知,1杯牛奶含克钙质,九月份一共30天,每天喝2杯,所以九月份一共喝30×2=60杯,再乘一杯牛奶还有钙质的质量即可。
30×2×
=60×
=18(克)
答:他在整个九月份通过喝牛奶可以摄取钙质18克。
【点睛】
认真读题,寻找有效数学信息。掌握分数与整数的乘法计算法则是解题关键。
19.48页
【解析】
根据题意先把这本书的总页数看是单位“1”,则第一天读了全书的,就还剩下全书的(1-)用乘法可求出剩下的页数,再把剩下的页数看是单位“1”,第二天读了余下的,用乘法可求出第二天读的页
解析:48页
【解析】
根据题意先把这本书的总页数看是单位“1”,则第一天读了全书的,就还剩下全书的(1-)用乘法可求出剩下的页数,再把剩下的页数看是单位“1”,第二天读了余下的,用乘法可求出第二天读的页数,据此解答。
160×(1-)×
=160××
=48(页)
答:第二周读了48页。
【点睛】
此题考查的是分数乘法的应用,解答此题关键是依据分数乘法的意义,注意两次单位“1”的不同。
20.不可以修完
【解析】
根据题意,把这段公路的长度看作单位“1”,甲每天完成,乙每天完成,那么甲、乙两工程队合修的工作效率是,根据工作效率时间工作量,得出8天的工作量,再与单位“1”比较即可。
解析:不可以修完
【解析】
根据题意,把这段公路的长度看作单位“1”,甲每天完成,乙每天完成,那么甲、乙两工程队合修的工作效率是,根据工作效率时间工作量,得出8天的工作量,再与单位“1”比较即可。
答:8天不可以修完这条公路。
【点睛】
此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,根据基本的数量关系“工作量工作效率和工作时间”,解决问题。
21.15平方厘米
【解析】
因为D是BC的中点,所以S△ACD=S△ABC;
因为AE与ED的比是2∶1,所以AD∶ED=3∶1,即S△CED=S△ACD;
因此S△CED=S△ABC××=90××=1
解析:15平方厘米
【解析】
因为D是BC的中点,所以S△ACD=S△ABC;
因为AE与ED的比是2∶1,所以AD∶ED=3∶1,即S△CED=S△ACD;
因此S△CED=S△ABC××=90××=15(平方厘米)
90××=15(平方厘米)
【点睛】
由题目里的中点及线段的比,再结合三角形的面积的特点,能够确定所求三角形面积与已知三角形面积的倍分关系,再依据倍分关系可计算求得阴影部分面积。
22.不能
【解析】
(箱)
(箱)
答:不能用这些油到达终点
解析:不能
【解析】
(箱)
(箱)
答:不能用这些油到达终点
23.千米
【解析】
(1+1)÷(),
=2÷ ,
=(千米);
答:汽车往返两地平均每小时行千米.
解析:千米
【解析】
(1+1)÷(),
=2÷ ,
=(千米);
答:汽车往返两地平均每小时行千米.
24.1008km
【解析】
解析:1008km
【解析】
25.90人
【解析】
=
=90(人)
答:参加机器人比赛的一共90人。
解析:90人
【解析】
=
=90(人)
答:参加机器人比赛的一共90人。
26.甲:30吨,乙:24吨
【解析】
设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨;甲用了之后,剩余粮食为(1-)x;乙仓用了之后,剩余粮食为(1-)×(54-x);此时剩下的两仓一样多,据此列
解析:甲:30吨,乙:24吨
【解析】
设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨;甲用了之后,剩余粮食为(1-)x;乙仓用了之后,剩余粮食为(1-)×(54-x);此时剩下的两仓一样多,据此列出方程解答。
解:设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨。
(1-)x=(1-)×(54-x)
x=×(54-x)
x=×54-x
x+x=×54
x=
x=÷
x=30
54-30=24(吨)
答:原甲仓存粮30吨,乙仓存粮24吨。
【点睛】
用方程解答关键是找出等量关系式:甲仓库原存粮吨数×剩余存粮所占分率=乙仓库原存粮吨数×剩余存粮所占分率,并根据等式的性质解方程。
27.60人
【解析】
将全班人数看作单位“1”,男生人数+2刚好是全班人数的1-,用男生人数÷对应分率即可。
(22+2)÷(1-)
=24÷
=60(人)
答:全班有60人。
【点睛】
关键是确定单位
解析:60人
【解析】
将全班人数看作单位“1”,男生人数+2刚好是全班人数的1-,用男生人数÷对应分率即可。
(22+2)÷(1-)
=24÷
=60(人)
答:全班有60人。
【点睛】
关键是确定单位“1”,找到部分数量以及对应分率。
28.150页
【解析】
第一天读了这本书的,第二天读了这本书的,都是以这本书为单位 “1”,那么还剩下这本书的,量率对应求 单位“1”。
(页)
答:这本故事书共有150页。
【点睛】
本题考查的是分
解析:150页
【解析】
第一天读了这本书的,第二天读了这本书的,都是以这本书为单位 “1”,那么还剩下这本书的,量率对应求 单位“1”。
(页)
答:这本故事书共有150页。
【点睛】
本题考查的是分数除法应用题,在用量率对应求单位“1”时,量和分率一定要相互对应。
29.甲队40米;乙队50米
【解析】
解:设乙队每天修x米,则甲队每天修x米,
4x+x×4=360
4x+x=360
x=360
x=50
50×=40(米)
答:甲队每天分别铺柏油路40米,乙队每天
解析:甲队40米;乙队50米
【解析】
解:设乙队每天修x米,则甲队每天修x米,
4x+x×4=360
4x+x=360
x=360
x=50
50×=40(米)
答:甲队每天分别铺柏油路40米,乙队每天修50米.
30.5000元
【解析】
把一项工程看作单位“1”,根据工作总量÷工作时间=工作效率,可求出甲的工作效率,再根据具体时间可求出甲6天的工作总量,进而求得乙的工作总量。用甲的工资除以甲的工作总量即可求出完
解析:5000元
【解析】
把一项工程看作单位“1”,根据工作总量÷工作时间=工作效率,可求出甲的工作效率,再根据具体时间可求出甲6天的工作总量,进而求得乙的工作总量。用甲的工资除以甲的工作总量即可求出完成工程总工资,进而求得乙的工资。
甲的工作效率为:
=
=
甲6天完成的工作量:
乙的工作总量:-=
甲的工作总量:1-=
(元)
答:乙应得工资5000元。
【点睛】
本题考查工程问题,把一项工程看作单位“1”是解题的关键。
31.84千米
【解析】
两车第一次相遇后到第二次相遇,这之间一共行驶了两倍的两城市之间的距离长度,已知卡车与客车的速度比是4∶3,即路程比是4∶3,则两车的路程差是 ,用24除以路程差,就是两倍的城市距
解析:84千米
【解析】
两车第一次相遇后到第二次相遇,这之间一共行驶了两倍的两城市之间的距离长度,已知卡车与客车的速度比是4∶3,即路程比是4∶3,则两车的路程差是 ,用24除以路程差,就是两倍的城市距离,再除以2即可。
24÷()÷2
=24÷ ÷2
=84(千米)
答:甲、乙两城相距84千米。
【点睛】
此题考查了学生对多次相遇问题的理解能力及其比的应用,关键是找出数量对应的分率。
32.700本
【解析】
用 算出的是分给高年级后剩下的书的本数,420本对应的分率是 ,所以用可求出这批书一共有多少本。
240÷=420(本)
420÷
=420÷
=700(本)
答:这批书一共有7
解析:700本
【解析】
用 算出的是分给高年级后剩下的书的本数,420本对应的分率是 ,所以用可求出这批书一共有多少本。
240÷=420(本)
420÷
=420÷
=700(本)
答:这批书一共有700本。
【点睛】
本题考查按比例分配、分数除法,解答本题的关键是掌握按比例分配解题的方法。
33.90千米
【解析】
根据题意,3小时相遇,可以根据总路程除以3,即可求得两辆汽车的速度和。再根据速度比是,计算出两车行驶的路程,求差即可。
450÷3=150(千米)
150×=90(千米);90×
解析:90千米
【解析】
根据题意,3小时相遇,可以根据总路程除以3,即可求得两辆汽车的速度和。再根据速度比是,计算出两车行驶的路程,求差即可。
450÷3=150(千米)
150×=90(千米);90×3=270(千米)
150×=60(千米);60×3=180(千米)
270-180=90(千米)
答:快车比慢车总共多行驶了90千米。
【点睛】
本题也可以根据比例知识求解:速度比是,则相同时间内行驶的路程比也是。
34.1∶2
【解析】
已知四边形ABCD,E、F 分别为AD、BC 的中点,如图,连接BD,三角形ABE和三角形BDE面积相等,三角形CDF和三角形BDF面积相等,那么所构成的四边形EBFD的面积正好是
解析:1∶2
【解析】
已知四边形ABCD,E、F 分别为AD、BC 的中点,如图,连接BD,三角形ABE和三角形BDE面积相等,三角形CDF和三角形BDF面积相等,那么所构成的四边形EBFD的面积正好是四边形ABCD的一半,三角形ABE和三角形CDF的面积之和是四边形ABCD的一半。
如图所示:
四边形EBFD的面积正
展开阅读全文