资源描述
福州市三牧中学七年级下册数学期末压轴难题试题及答案解答
一、选择题
1.的平方根是()
A.4 B. C.2 D.
2.下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是()
A. B. C. D.
3.如图,小手盖住的点的坐标可能为( )
A. B. C. D.
4.有下列命题,①的算术平方根是2;②一个角的邻补角一定大于这个角;③在同一平面内,垂直于同一条直线的两直线平行;④平行于同一条直线的两条直线互相平行.其中假命题有( )
A.①② B.①③ C.②④ D.③④
5.直线,直线与,分别交于点,,.若,则的度数为( )
A. B. C. D.
6.下列语句中正确的是( )
A.-9的平方根是-3 B.9的平方根是3 C.9的立方根是 D.9的算术平方根是3
7.如图,已知,平分,,则的度数是( )
A. B. C. D.
8.如图,在平面直角坐标系中,长方形ABCD的各边分别平行于x轴或y轴,一物体从点A(-2,1)出发,沿矩形ABCD的边按逆时针作环绕运动,速度为1个单位/秒,则经过2022秒后,物体所在位置的坐标为( )
A.(﹣2,1) B.(﹣2,﹣1) C.( 2,﹣1) D.( 2,1)
二、填空题
9.的算术平方根为_______;
10.在平面直角坐标系中,点与点关于轴对称,则的值是_____.
11.如图,点D是△ABC三边垂直平分线的交点,若∠A=64°,则∠D=_____°.
12.如图,将三角板与两边平行的直尺()贴在一起,使三角板的直角顶点C()在直尺的一边上,若,则的度数等于________.
13.如图,沿折痕折叠长方形,使C,D分别落在同一平面内的,处,若,则的大小是_______.
14.对于任意有理数a,b,规定一种新的运算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____
15.在平面直角坐标系中,点P的坐标为,则点P在第________象限.
16.如图,在平面直角坐标系中,三角形,三角形,三角形都是斜边在轴上,斜边长分别为2,4,6,…的等腰直角三角形.若三角形的顶点坐标分别为,,,则按图中规律,点的坐标为______.
三、解答题
17.计算(每小题4分)
(1)
(2).
(3).
(4)+|﹣2 | + ( -1 )2017
18.求下列各式中的x值:
(1)16(x+1)2=25; (2)8(1﹣x)3=125
19.如图,∠1+∠2=180°,∠C=∠D.求证:ADBC.
证明:∵∠1+∠2=180°,∠2+∠AED=180°,
∴∠1=∠AED( ),
∴AC ( ),
∴∠D=∠DAF( ).
∵∠C=∠D,
∴∠DAF= (等量代换).
∴ADBC( ).
20.三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,,,.
(1)将向右平移4个单位长度得到,画出平移后的;
(2)将向下平移5个单位长度得到,画出平移后的;
(3)直接写出三角形的面积为______平方单位.(直接写出结果)
21.若整数的两个平方根为,;为的整数部分.
(1)求及的值;
(2)求的立方根.
二十二、解答题
22.如图是一块正方形纸片.
(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为 dm.
(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“=”或“<”或“>”号)
(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?
二十三、解答题
23.直线AB∥CD,点P为平面内一点,连接AP,CP.
(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;
(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;
(3)如图③,点P在直线CD下方,当∠BAK=∠BAP,∠DCK=∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由.
24.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条、、、,做成折线,如图1,且在折点B、C、D处均可自由转出.
(1)如图2,小明将折线调节成,,,判断是否平行于,并说明理由;
(2)如图3,若,调整线段、使得求出此时的度数,要求画出图形,并写出计算过程.
(3)若,,,请直接写出此时的度数.
25.(生活常识)
射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .
(现象解释)
如图 2,有两块平面镜 OM,ON,且 OM⊥ON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 AB∥CD.
(尝试探究)
如图 3,有两块平面镜 OM,ON,且∠MON =55° ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求∠BEC 的大小.
(深入思考)
如图 4,有两块平面镜 OM,ON,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,∠BED=β , α 与 β 之间满足的等量关系是 .(直接写出结果)
26.在中,,,点在直线上运动(不与点、重合),点在射线上运动,且,设.
(1)如图①,当点在边上,且时,则__________,__________;
(2)如图②,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由;
(3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)
【参考答案】
一、选择题
1.D
解析:D
【分析】
先算出的值,再根据平方根的定义“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根”即可进行解答.
【详解】
解:,
∵,
∴4的平方根是,
故选D.
【点睛】
本题考查了平方根,解题的关键是要先算出的值和掌握平方根的定义,并学会区分平方根和算术平方根.
2.D
【分析】
根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.
【详解】
解:A、是由基本图形旋转得到的,故不选.
B、是轴对称图形,故不选.
C、是由基本图形旋转得到的,故不选.
解析:D
【分析】
根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.
【详解】
解:A、是由基本图形旋转得到的,故不选.
B、是轴对称图形,故不选.
C、是由基本图形旋转得到的,故不选.
D、是由基本图形平移得到的,故选此选项.
综上,本题选择D.
【点睛】
本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断.
3.C
【分析】
根据各象限内点的坐标特征判断即可.
【详解】
由图可知,小手盖住的点在第四象限,
∴点的横坐标为正数,纵坐标为负数,
∴(2,-3)符合.其余都不符合
故选:C.
【点睛】
本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键.
4.A
【分析】
根据算术平方根的定义,邻补角的定义,平行线的判定逐一分析判断即可.
【详解】
①,的算术平方根是,①是假命题;
②大于的角的的邻补角小于这个角,②是假命题;
③在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题;
④平行于同一条直线的两条直线互相平行,正确,是真命题.
所以假命题有①②.
故选A.
【点睛】
本题考查了算术平方根的定义,邻补角的定义,平行线的判定等知识,掌握以上知识是解题的关键.
5.B
【分析】
由对顶角相等得∠DFE=55°,然后利用平行线的性质,得到∠BEF=125°,即可求出的度数.
【详解】
解:由题意,根据对顶角相等,则
,
∵,
∴,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出.
6.D
【分析】
根据平方根、立方根、算术平方根的定义逐一进行判断即可.
【详解】
A. 负数没有平方根,故A选项错误;
B. 9的平方根是±3,故B选项错误;
C. 9的立方根是,故C选项错误;
D. 9的算术平方根是3,正确,
故选D.
【点睛】
本题考查了平方根、立方根、算术平方根等知识,熟练掌握相关概念以及求解方法是解题的关键.
7.D
【分析】
由题意易得,则有,然后根据平行线的性质可求解.
【详解】
解:∵,,
∴,
∵平分,
∴,
∴,
∵,
∴;
故选D.
【点睛】
本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.
8.C
【分析】
用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置.
【详解】
解:由图可得,长方形的周长为2×(1×2+2×2)=12,
∵2022=16
解析:C
【分析】
用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置.
【详解】
解:由图可得,长方形的周长为2×(1×2+2×2)=12,
∵2022=168×12+6,
∴经过2022秒后,该物体应运动了168圈,且继续运动6个单位,
∴从A点开始按逆时针运动6秒到达了C点,
∴经过2022秒后,物体所在位置的坐标为(2,-1).
故选:C.
【点睛】
本题主要考查了平面直角坐标系、点的坐标规律,解决本题的关键是得出2022=168×12+6,即经过2022秒后,该物体应运动了168圈,且继续运动6个单位.
二、填空题
9.【分析】
先求出的值,然后再化简求值即可.
【详解】
解:∵,
∴2的算术平方根是,
∴的算术平方根是.
故答案为.
【点睛】
本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答
解析:
【分析】
先求出的值,然后再化简求值即可.
【详解】
解:∵,
∴2的算术平方根是,
∴的算术平方根是.
故答案为.
【点睛】
本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答本题的关键,直接求解是本题的易错点.
10.4
【分析】
根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.
【详解】
点与点关于轴对称,
,,
则a+b的值是:,
故答案为.
【点睛】
本题考查了关于x轴对称的
解析:4
【分析】
根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.
【详解】
点与点关于轴对称,
,,
则a+b的值是:,
故答案为.
【点睛】
本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.
11.128°
【解析】
【分析】
由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果
【详解】
∵D为△ABC三边垂直平分线交点,
∴点D为△ABC的
解析:128°
【解析】
【分析】
由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果
【详解】
∵D为△ABC三边垂直平分线交点,
∴点D为△ABC的外心,
∴∠D=2∠A
∵∠A=64°
∴∠D=128°
故∠D的度数为128°
【点睛】
此题考查线段垂直平分线的性质,解题关键在于根据同弧所对的圆周角等于圆心角的一半来解答
12.35
【分析】
根据平行线的性质和直角三角形两锐角互余即可求得
【详解】
故答案为:35°.
【点睛】
本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.
解析:35
【分析】
根据平行线的性质和直角三角形两锐角互余即可求得
【详解】
故答案为:35°.
【点睛】
本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.
13.70
【分析】
由题意易图可得,由折叠的性质可得,然后问题可求解.
【详解】
解:由长方形可得:,
∵,
∴,
由折叠可得,
∴;
故答案为70.
【点睛】
本题主要考查平行线的性质及折叠的性质,熟
解析:70
【分析】
由题意易图可得,由折叠的性质可得,然后问题可求解.
【详解】
解:由长方形可得:,
∵,
∴,
由折叠可得,
∴;
故答案为70.
【点睛】
本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键.
14.-9
【分析】
直接利用已知运算法则计算得出答案.
【详解】
(﹣2)⊙6
=﹣2×(﹣2+6)﹣1
=﹣2×4﹣1
=﹣8﹣1
=﹣9.
故答案为﹣9.
【点睛】
此题考察新定义形式的有理数计算,
解析:-9
【分析】
直接利用已知运算法则计算得出答案.
【详解】
(﹣2)⊙6
=﹣2×(﹣2+6)﹣1
=﹣2×4﹣1
=﹣8﹣1
=﹣9.
故答案为﹣9.
【点睛】
此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.
15.三
【分析】
先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.
【详解】
解:∵a2为非负数,
∴-a2-1为负数,
∴点P的符号为(-,-)
∴点P在第三象限.
故答案
解析:三
【分析】
先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.
【详解】
解:∵a2为非负数,
∴-a2-1为负数,
∴点P的符号为(-,-)
∴点P在第三象限.
故答案为:三.
【点睛】
本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
16.【分析】
根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.
【详解】
解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边
解析:
【分析】
根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.
【详解】
解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6
∴A7A9=8,A5A7=6,A3A5=4
∴A3A7= A5A7- A3A5=2
∴A3A7= A7A9- A3A7=6
又∵A3与原点重合
∴A9的坐标为(6,0)
故答案为:(6,0).
【点睛】
本题主要考查了坐标与图形的变化,解题的关键在于能够准确从图形中获取信息求解.
三、解答题
17.(1)0;(2);(3)1;(4)3.
【分析】
(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;
(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;
(3)先算绝对值、立方根
解析:(1)0;(2);(3)1;(4)3.
【分析】
(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;
(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;
(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;
(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.
【详解】
解:(1)原式=-3+4-3
=-2
(2)原式=
=
(3)原式=2+(-2)+1
=1
(4)原式=2+2-1
=3
【点睛】
本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.
18.(1)或;(2)
【分析】
(1)根据平方根,即可解答;
(2)根据立方根,即可解答.
【详解】
解:(1)等式两边都除以16,得.
等式两边开平方,得.
所以,得.
所以,
解析:(1)或;(2)
【分析】
(1)根据平方根,即可解答;
(2)根据立方根,即可解答.
【详解】
解:(1)等式两边都除以16,得.
等式两边开平方,得.
所以,得.
所以,
(2)等式两边都除以8,得.
等式两边开立方,得.
所以,
【点睛】
本题考查平方根、立方根,解题关键是熟记平方根、立方根.
.
19.同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行.
【分析】
根据平行线的判定和性质定理即可得到结论.
【详解】
证明:,,
(同角的补角相等),
解析:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行.
【分析】
根据平行线的判定和性质定理即可得到结论.
【详解】
证明:,,
(同角的补角相等),
(内错角相等,两直线平行),
(两直线平行,内错角相等),
,
(等量代换),
(同位角相等,两直线平行).
故答案为:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;;同位角相等,两直线平行.
【点睛】
本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键.
20.(1)见解析;(2)见解析;(3)
【分析】
(1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;
(2)把三角形的各顶点向下平移5个单位长度,得到、、的对应
解析:(1)见解析;(2)见解析;(3)
【分析】
(1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;
(2)把三角形的各顶点向下平移5个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;
(3)三角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积.
【详解】
解:(1)平移后的三角形如下图所示;
(2)平移后的三角形如下图所示;
(3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积,
∴S△ABC
.
【点睛】
本题考查了作图平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差.
21.(1)a=4,m=36;(2)6
【分析】
(1)根据平方根的性质得到,求出a值,从而得到m;
(2)估算出的范围,得到b值,代入求出,从而得到的立方根.
【详解】
解:(1)∵整数的两个平方根为,
解析:(1)a=4,m=36;(2)6
【分析】
(1)根据平方根的性质得到,求出a值,从而得到m;
(2)估算出的范围,得到b值,代入求出,从而得到的立方根.
【详解】
解:(1)∵整数的两个平方根为,,
∴,
解得:,
∴,
∴m=36;
(2)∵为的整数部分,
∴,
∴,
∴b=9,
∴,
∴的立方根为6.
【点睛】
本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.
二十二、解答题
22.(1);(2)<;(3)不能;理由见解析.
【分析】
(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;
(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;
(3)采
解析:(1);(2)<;(3)不能;理由见解析.
【分析】
(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;
(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;
(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.
【详解】
解:(1)由已知AB2=1,则AB=1,
由勾股定理,AC=;
故答案为:.
(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4.
;即C圆<C正;
故答案为:<
(3)不能;
由已知设长方形长和宽为3xcm和2xcm
∴长方形面积为:2x•3x=12
解得x=
∴长方形长边为3>4
∴他不能裁出.
【点睛】
本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.
二十三、解答题
23.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析
【分析】
(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠
解析:(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析
【分析】
(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;
(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,进而得到∠AKC=∠APC;
(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,进而得到∠BAK﹣∠DCK=∠APC.
【详解】
(1)如图1,过P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=∠BAP,∠CPE=∠DCP,
∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;
(2)∠AKC=∠APC.
理由:如图2,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠AKE=∠BAK,∠CKE=∠DCK,
∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,
过P作PF∥AB,
同理可得,∠APC=∠BAP+∠DCP,
∵∠BAP与∠DCP的角平分线相交于点K,
∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,
∴∠AKC=∠APC;
(3)∠AKC=∠APC
理由:如图3,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠BAK=∠AKE,∠DCK=∠CKE,
∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,
过P作PF∥AB,
同理可得,∠APC=∠BAP﹣∠DCP,
∵∠BAK=∠BAP,∠DCK=∠DCP,
∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,
∴∠AKC=∠APC.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.
24.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°
【分析】
(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C
解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°
【分析】
(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED;
(2)根据题意作AB∥CD,即可∠B=∠C=35°;
(3)分别画图,根据平行线的性质计算出∠B的度数.
【详解】
解:(1)AB平行于ED,理由如下:
如图2,过点C作CF∥AB,
∴∠BCF=∠B=50°,
∵∠BCD=85°,
∴∠FCD=85°-50°=35°,
∵∠D=35°,
∴∠FCD=∠D,
∴CF∥ED,
∵CF∥AB,
∴AB∥ED;
(2)如图,即为所求作的图形.
∵AB∥CD,
∴∠ABC=∠C=35°,
∴∠B的度数为:35°;
∵A′B∥CD,
∴∠ABC+∠C=180°,
∴∠B的度数为:145°;
∴∠B的度数为:35°或145°;
(3)如图2,过点C作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠FCD=∠D=35°,
∵∠BCD=85°,
∴∠BCF=85°-35°=50°,
∴∠B=∠BCF=50°.
答:∠B的度数为50°.
如图5,过C作CF∥AB,则AB∥CF∥CD,
∴∠FCD=∠D=35°,
∵∠BCD=85°,
∴∠BCF=85°-35°=50°,
∵AB∥CF,
∴∠B+∠BCF=180°,
∴∠B=130°;
如图6,∵∠C=85°,∠D=35°,
∴∠CFD=180°-85°-35°=60°,
∵AB∥DE,
∴∠B=∠CFD=60°,
如图7,同理得:∠B=35°+85°=120°,
综上所述,∠B的度数为50°或130°或60°或120°.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用.
25.【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a.
【分析】
[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠
解析:【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a.
【分析】
[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;
[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;
[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.
【详解】
[现象解释]
如图2,
∵OM⊥ON,
∴∠CON=90°,
∴∠2+∠3=90°
∵∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=180°,
∴∠DCB+∠ABC=180°,
∴AB∥CD;
【尝试探究】
如图3,
在△OBC中,∵∠COB=55°,
∴∠2+∠3=125°,
∵∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=250°,
∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,
∴∠EBC+BCE=360°-250°=110°,
∴∠BEC=180°-110°=70°;
【深入思考】
如图4,
β=2α,
理由如下:∵∠1=∠2,∠3=∠4,
∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,
∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,
∵∠BOC=∠3-∠2=α,
∴β=2α.
【点睛】
本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.
26.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析
【分析】
(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC
解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析
【分析】
(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;
(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;
(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.
【详解】
解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.
∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,
∴∠ABC=∠ACB=40°,
∴∠ADC=∠ABC+∠BAD=40°+60°=100°.
∵∠DAC=40°,∠ADE=∠AED,
∴∠ADE=∠AED=70°,
∴∠CDE=∠ADC-∠ADE=100°-70°=30°.
故答案为60,30.
(2)∠BAD=2∠CDE,理由如下:
如图②,在△ABC中,∠BAC=100°,
∴∠ABC=∠ACB=40°.
在△ADE中,∠DAC=n,
∴∠ADE=∠AED=,
∵∠ACB=∠CDE+∠AED,
∴∠CDE=∠ACB-∠AED=40°-=,
∵∠BAC=100°,∠DAC=n,
∴∠BAD=n-100°,
∴∠BAD=2∠CDE.
(3)成立,∠BAD=2∠CDE,理由如下:
如图③,在△ABC中,∠BAC=100°,
∴∠ABC=∠ACB=40°,
∴∠ACD=140°.
在△ADE中,∠DAC=n,
∴∠ADE=∠AED=,
∵∠ACD=∠CDE+∠AED,
∴∠CDE=∠ACD-∠AED=140°-=,
∵∠BAC=100°,∠DAC=n,
∴∠BAD=100°+n,
∴∠BAD=2∠CDE.
【点睛】
本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.
展开阅读全文