资源描述
成都石室外语学校七年级数学上册期末压轴题汇编
一、七年级上册数学压轴题
1.已知:,、、是内的射线.
(1)如图1,若平分,平分.当射线绕点在内旋转时,求的度数.
(2)也是内的射线,如图2,若,平分,平分,当射线绕点在内旋转时,求的大小.
2.数轴上点A对应的数为a,点B对应的数为b,且多项式的二次项系数为a,常数项为b.
(1)线段AB的长= ;
(2)如图,点P,Q分别从点A,B同时出发沿数轴向右运动,点P的速度是每秒2个单位长度,点Q的速度是每秒4个单位长度,当BQ=2BP时,点P对应的数是多少?
(3)在(2)的条件下,点M从原点与点P,Q同时出发沿数轴向右运动,速度是每秒x个单位长度(),若在运动过程中,2MP-MQ的值与运动的时间t无关,求x的值.
3.阅读下面的材料并解答问题:
点表示数,点表示数,点表示数,且点到点的距离记为线段的长,线段的长可以用右边的数减去左边的数表示,即.
若是最小的正整数,且满足.
(1)_________,__________.
(2)若将数轴折叠,使得与点重合:
①点与数_________表示的点重合;
②若数轴上两点之间的距离为2018(在的左侧),且两点经折叠后重合,则两点表示的数是_______、__________.
(3)点开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为秒,试探索:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出其值.
4.已知,A,B在数轴上对应的数分用a,b表示,且,数轴上动点P对应的数用x表示.
(1)在数轴上标出A、B的位置,并直接写出A、B之间的距离;
(2)写出的最小值;
(3)已知点C在点B的右侧且BC=9,当数轴上有点P满足PB=2PC时,
①求P点对应的数的值;
②数轴上另一动点Q从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点Q能移动到与①中的点P重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动可以重合。
5.如图,数轴上有三个点、、,表示的数分别是、、,请回答:
(1)若使、两点的距离与、两点的距离相等,则需将点向左移动______个单位.
(2)若移动、、三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是_______个单位;
(3)若在表示的点处有一只小青蛙,一步跳个单位长.小青蛙第次先向左跳步,第次再向右跳步,然后第次再向左跳步,第次再向右跳步按此规律继续跳下去,那么跳第次时,应跳_______步,落脚点表示的数是_______.
(4)数轴上有个动点表示的数是,则的最小值是_______.
6.(背景知识)
数轴是数学中的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现了一些重要的规律:若数轴上点A,B表示的数分别为a,b,则A,B两点之间的距离,线段的中点表示的数为.
(问题情境)
如图,数轴上点A表示的数为,点B表示的数为8,点P从点A出发,以每秒4个单位的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒1个单位的速度向右匀速运动.设运动时间为.
(综合运用)
(1)填空:
①A,B两点间的距离______,线段的中点表示的数为________.
②用含t的代数式表示:后,点P表示的数为_______,点Q表示的数为_______.
(2)求当t为何值时,P,Q两点相遇,并写出相遇点表示的数.
(3)求当t为何值时,.
(4)若M为的中点,N为的中点,点P在运动过程中,线段的长是否发生变化?若变化,请说明理由,若不变,请求出线段的长.
7.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是的美好点.
例如;如图1,点A表示的数为,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是的美好点;又如,表示0的点D到点A的距离是1,到点B的距高是2,那么点D就不是的美好点,但点D是的美好点.
如图2,M,N为数轴上两点,点M所表示的数为,点N所表示的数为2.
(1)点E,F,G表示的数分别是,6.5,11,其中是美好点的是________;写出美好点H所表示的数是___________.
(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,点P恰好为M和N的美好点?
8.已知数轴上点A对应的数为,点B在点A右侧,且两点间的距离为8.点P为数轴上一动点,点C在原点位置.
(1)点B的数为____________;
(2)①若点P到点A的距离比到点B的距离大2,点P对应的数为_________;
②数轴上是否存在点P,使点P到点A的距离是点P到点B的距离的2倍?若存在,求出点P对应的数;若不存在,请说明理由;
(3)已知在数轴上存在点P,当点P到点A的距离与点P到点C的距离之和等于点P到点B的距离时,点P对应的数为___________;
9.已知数轴上的A、B、C、D四点所表示的数分别是a、b、c、d,且(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|.
(1)求a、b、c、d的值;
(2)点A,B沿数轴同时出发相向匀速运动,4秒后两点相遇,点B的速度为每秒2个单位长度,求点A的运动速度;
(3)A,B两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,C点以每秒1个单位长度的速度向数轴正方向开始运动,若t秒时有2AB=CD,求t的值;
(4)A,B两点以(2)中的速度从起始位置同时出发,相向而行当A点运动到C点时,迅速以原来速度的2倍返回,到达出发点后,保持改变后的速度又折返向C点运动;当B点运动到A点的起始位置后停止运动.当B点停止运动时,A点也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数.
10.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D=30°)的直角顶点放在点O处,一边OE在射线OA上,另一边OD与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OD恰好平分∠BOC.
①此时t的值为 ;(直接填空)
②此时OE是否平分∠AOC?请说明理由;
(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠DOE?请说明理由;
(3)在(2)问的基础上,经过多长时间OC平分∠DOB?请画图并说明理由.
11.以直线AB上一点O为端点作射线OC,使∠BOC=40°,将一个直角三角板的直角顶点放在O处,即∠DOE=90°.
(1)如图1,若直角三角板DOE的一边OE放在射线OA上,则∠COD= ;
(2)如图2,将直角三角板DOE绕点O顺时针转动到某个位置,若OE恰好平分∠AOC,则∠COD= ;
(3)将直角三角板DOE绕点O顺时针转动(OD与OB重合时为停止)的过程中,恰好有∠COD=∠AOE,求此时∠BOD的度数.
12.已知,O为直线AB上一点,射线OC将分成两部分,若时,
(1)如图1,若OD平分,OE平分,求的度数;
(2)如图2,在(1)的基础上,将以每秒的速度绕点O顺时针旋转,同时射线OC以每秒的速度绕点O顺时针旋转,设运动时间为.
①t为何值时,射线OC平分?
②t为何值时,射线OC平分?
13.如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图①放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转
(1)试说明∠DPC=90°;
(2)如图②,若三角板PBD保持不动,三角板PAC绕点P逆时针旋转旋转一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;
(3)如图③.在图①基础上,若三角板PAC开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请求出旋转的时间.
14.(学习概念) 如图1,在∠AOB的内部引一条射线OC,则图中共有3个角,分别是∠AOB、∠AOC和∠BOC.若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“好好线”.
(理解运用)
(1)①如图2,若∠MPQ=∠NPQ,则射线PQ ∠MPN的“好好线”(填“是”或“不是”);
②若∠MPQ≠∠NPQ,∠MPQ=α,且射线PQ是∠MPN的“好好线”,请用含α的代数式表示∠MPN;
(拓展提升)
(2)如图3,若∠MPN=120°,射线PQ绕点P从PN位置开始,以每秒12°的速度逆时针旋转,旋转的时间为t秒.当PQ与PN成110°时停止旋转.同时射线PM绕点P以每秒6°的速度顺时针旋转,并与PQ同时停止. 当PQ、PM其中一条射线是另一条射线与射线PN的夹角的“好好线”时,则t= 秒.
15.定义:在同一平两内,有公共端点的三条射线中,一条射线是另两条射线组成夹角的角平分线,我们称这三条射线为“共生三线”.
如图为一量角器的平面示意图,为量角器的中心.作射线,,,并将其所对应的量角器外圈刻度分别记为,,.
(1)若射线,,为“共生三线”,且为的角平分线.
①如图1,,,则______;
②当,时,请在图2中作出射线,,,并直接写出的值;
③根据①②的经验,得______(用含,的代数式表示).
(2)如图3,,.在刻度线所在直线上方区域内,将,,按逆时针方向绕点同时旋转,旋转速度分别为每秒,,,若旋转秒后得到的射线,,为“共生三线”,求的值.
16.已知点C在线段AB上,AC=2BC,点D,E在直线AB上,点D在点E的左侧.
(1)若AB=15,DE=6,线段DE在线段AB上移动.
①如图1,当E为BC中点时,求AD的长;
②点F(异于A,B,C点)在线段AB上,AF=3AD,CF=3,求AD的长;
(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式=,求的值.
17.(阅读理解)
射线OC是∠AOB内部的一条射线,若∠COA=∠BOC,则我们称射线OC是射线OA关于∠AOB的伴随线.例如,如图1,若∠AOC=∠BOC,则称射线OC是射线OA关于∠AOB的伴随线;若∠BOD =∠COD,则称射线OD是射线OB关于∠BOC的伴随线.
(知识运用)如图2,∠AOB=120°.
(1)射线OM是射线OA关于∠AOB的伴随线.则∠AOM=_________°
(2)射线ON是射线OB关于∠AOB的伴随线,射线OQ是∠AOB的平分线,则∠NOQ的度数是_________°.
(3)射线OC与射线OA重合,并绕点O以每秒2°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒3°的速度顺时针旋转,当射线OD与射线OA重合时,运动停止.
①是否存在某个时刻t(秒),使得∠COD的度数是20°,若存在,求出t的值,若不存在,请说明理由.
②当t为多少秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线组成的角的一边的伴随线.
18.如图,已知,是等边三角形(三条边都相等、三个角都等于的三角形),平分.
(1)如图1,当时,_________;
(2)如图2,当时,________;
(3)如图3,当时,求的度数,请借助图3填空.
解:因为,,
所以,
因为平分,
所以_________________(用表示),
因为为等边三角形,
所以,
所以_______(用表示).
(4)由(1)(2)(3)问可知,当时,直接写出的度数(用来表示,无需说明理由)
19.已知∠AOB,过顶点O作射线OP,若∠BOP=∠AOP,则称射线OP为∠AOB的“好线”,因此∠AOB的“好线”有两条,如图1,射线OP1,OP2都是∠AOB的“好线”.
(1)已知射线OP是∠AOB的“好线”,且∠BOP=30°,求∠AOB的度数.
(2)如图2,O是直线MN上的一点,OB,OA分别是∠MOP和∠PON的平分线,已知∠MOB=30°,请通过计算说明射线OP是∠AOB的一条“好线”.
(3)如图3,已知∠MON=120°,∠NOB=40°.射线OP和OA分别从OM和OB同时出发,绕点O按顺时针方向旋转,OP的速度为每秒12°,OA的速度为每秒4°,当射线OP旋转到ON上时,两条射线同时停止.在旋转过程中,射线OP能否成为∠AOB的“好线”.若不能,请说明理由;若能,请求出符合条件的所有的旋转时间.
20.已知:,OB、OM、ON,是 内的射线.
(1)如图 1,若 OM 平分 , ON平分.当射线OB 绕点O 在 内旋转时,= 度.
(2)OC也是内的射线,如图2,若 ,OM平分,ON平分,当射线OB绕点O在内旋转时,求的大小.
(3)在(2)的条件下,当射线OB从边OA开始绕O点以每秒的速度逆时针旋转t秒,如图3,若,求t的值.
【参考答案】***试卷处理标记,请不要删除
一、七年级上册数学压轴题
1.(1);(2)
【分析】
(1)根据角平分线的定义求出和,然后根据代入数据进行计算即可得解;
(2)根据角平分线的定义表示出和,然后根据计算即可得解.
【详解】
解:(1)∵平分,
∴
∵平分,
∴
解析:(1);(2)
【分析】
(1)根据角平分线的定义求出和,然后根据代入数据进行计算即可得解;
(2)根据角平分线的定义表示出和,然后根据计算即可得解.
【详解】
解:(1)∵平分,
∴
∵平分,
∴
∴
(2)∵平分,
∴,
∵平分,
∴
∴
=
【点睛】
本题考查了角的计算,角平分线的定义,准确识图是解题的关键,难点在于要注意整体思想的利用.
2.(1)36;(2)6;(3)
【分析】
(1)根据多项式求出a,b的值,然后计算即可;
(2)设运动时间为ts,根据题意列出方程,解方程即可,然后即可求出点P所对应的数;
(3)首先根据题意得出2M
解析:(1)36;(2)6;(3)
【分析】
(1)根据多项式求出a,b的值,然后计算即可;
(2)设运动时间为ts,根据题意列出方程,解方程即可,然后即可求出点P所对应的数;
(3)首先根据题意得出2MP−MQ,然后根据2MP-MQ的值与运动的时间t无关求解即可.
【详解】
(1)∵多项式的二次项系数为a,常数项为b,
,
;
(2)设运动的时间为ts,由BQ=2BP得:
4t=2(36−2t),
解得:t=9,
因此,点P所表示的数为:2×9−12=6,
答:点P所对应的数是6.
(3)由题意得:点P所表示的数为(−12+2t),点M所表示的数为xt,点Q所表示的数为(24+4t),
∴2MP−MQ=2[xt−(−12+2t)]−(24+4t−xt)=3xt−8t=(3x−8)t,
∵结果与t无关,
∴3x−8=0,
解得:x=.
【点睛】
本题主要考查数轴与一元一次方程的结合,数形结合是解题的关键.
3.(1)1,5;(2)①3;②-1007,1011;(3)不变,值为8
【分析】
(1)利用非负性可求解;
(2)①由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解;
②由折叠的性质可求解
解析:(1)1,5;(2)①3;②-1007,1011;(3)不变,值为8
【分析】
(1)利用非负性可求解;
(2)①由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解;
②由折叠的性质可求解;
(3)利用两点距离公式分别求出AC,AB,表示出3AC-5AB,再化简即可求解.
【详解】
解:(1)∵b是最小的正整数,
∴b=1,
∵(c-5)2+|a+b|=0.
∴c=5,a=-b=-1,
故答案为:1,5;
(2)①∵将数轴折叠,使得A与C点重合:
∴AC的中点表示的数是(-1+5)÷2=2,
∴与点B重合的数=2-1+2=3;
②点P表示的数为2-2018÷2=-1007,
点Q表示的数为2+2018÷2=1011,
故答案为:-1007,1011;
(3)3AC-5AB的值不变.
理由是:
点A表示的数为:-1-2t,
点B表示的数为:1+t,
点C表示的数为:5+3t,
∴AC=5+3t-(-1-2t)=6+5t,AB=1+t-(-1-2t)=2+3t,
3AC-5AB=3(6+5t)-5(2+3t)=8,
所以3AC-5AB的值不变,为8.
【点睛】
本题考查了数轴,非负性,折叠的性质,两点距离公式,灵活运用这些性质解决问题是本题的关键.
4.(1)A、B位置见解析,AB=30;(2)30;(3)①8或-4;②能,第8次
【分析】
(1)求出a、b的值,在数轴表示即可,求出AB的距离;
(2)|x-20|+|x+10|的最小值,就是数轴上
解析:(1)A、B位置见解析,AB=30;(2)30;(3)①8或-4;②能,第8次
【分析】
(1)求出a、b的值,在数轴表示即可,求出AB的距离;
(2)|x-20|+|x+10|的最小值,就是数轴上表示20的点,与表示-10的点之间的距离;
(3)①求出c的值,设出点P对应的数,用距离列方程求解即可;
②点Q移动时,每一次对应的数分别列举出来,发现规律,得出结论.
【详解】
解:(1)|a-20|+(b+10)2=0,解得:a=20,b=-10;
∴AB=20-(-10)=30;
(2)|x-a|+|x-b|=|x-20|+|x+10|,
当x位于点A与点B之间时,即,-10≤x≤20时,|x-20|+|x+10|的值最小,最小值为AB=30,
答:|x-20|+|x+10|的最小值为30;
(3)①点C在点B的右侧且|BC|=9,因此点C所表示的数为-1,
设点P表示的数为x,
|x+10|=2|x+1|,解得x=8或x=-4;
②点Q每次移动对应在数轴上的数,
第1次:-1,第3次:-3,第5次:-5,……
第2次:2,第4次:4,第6次:6,……
因此点Q能移动到与①中的点P重合的位置,与8重合时,移动第8次,不可能与-4重合,
答:点Q能移动到与①中的点P重合的位置,移动的次数为8次.
【点睛】
本题考查数轴表示数的意义和方法,理解数轴上两点之间距离的计算方法,是解决问题的关键.
5.(1)3;(2)3,7;(3)197,;(4)9.
【分析】
(1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得;
(2)分为三种:移动点B、C;移动点A、C;移动点A、B,再
解析:(1)3;(2)3,7;(3)197,;(4)9.
【分析】
(1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得;
(2)分为三种:移动点B、C;移动点A、C;移动点A、B,再利用数轴的定义分别求出移动所走的距离和即可得;
(3)先根据前4次归纳类推出一般规律,再列出运算式子,计算有理数的加减法即可得;
(4)分,,和数四种情况,再分别结合数轴的定义、化简绝对值即可得.
【详解】
(1)设需将点C向左移动x个单位,
由题意得:,
解得,
即需将点C向左移动3个单位,
故答案为:3;
(2),
,
,
由题意,分以下三种情况:
①移动点B、C,
把点B向左移动2个单位,点C向左移动7个单位,
此时移动所走的距离和为;
②移动点A、C,
把点A向右移动2个单位,点C向左移动5个单位,
此时移动所走的距离和为;
③移动点A、B,
把点A向右移动7个单位,点B向右移动5个单位,
此时移动所走的距离和为;
综上,移动方法有3种,其中移动所走的距离和最小的是7个单位,
故答案为:3,7;
(3)第次跳的步数为,
第次跳的步数为,
第次跳的步数为,
第次跳的步数为,
归纳类推得:第n次跳的步数为,其中n为正整数,
则第99次跳的步数为,
落脚点表示的数为,
,
,
,
故答案为:197,;
(4)由题意,分以下四种情况:
①当时,
则;
②当时,
则,
,
;
③当时,
则,
,
;
④当时,
则;
综上,,
则的最小值是9,
故答案为:9.
【点睛】
本题考查了数轴、化简绝对值、一元一次方程的应用等知识点,熟练掌握数轴的定义是解题关键.
6.(1)①10,3;②−2+4t,8+t;(2)t=,相遇点表示的数为;(3)t=5或;(4)线段的长不发生变化,MN=5
【分析】
(1)①根据A,B两点之间的距离,线段的中点表示的数为,即可得到答
解析:(1)①10,3;②−2+4t,8+t;(2)t=,相遇点表示的数为;(3)t=5或;(4)线段的长不发生变化,MN=5
【分析】
(1)①根据A,B两点之间的距离,线段的中点表示的数为,即可得到答案;②根据题意直接表示出P,Q所对应的数,即可;
(2)当P、Q两点相遇时,P、Q表示的数相等列方程,得到t的值,进而得到 P、Q相遇的点所对应的数;
(3)由t秒后,点P表示的数−2+4t,点Q表示的数为8+t,于是得到PQ的表达式,结合,列方程即可得到结论;
(4)由点M表示的数为,点N表示的数为,即可得到结论.
【详解】
解:(1)①A、B两点间的距离AB=|−2−8|=10,线段AB的中点表示的数为:,
故答案是:10,3;
②由题意可得,后,点P表示的数为:−2+4t,点Q表示的数为:8+t,
故答是:−2+4t,8+t;
(2)∵当P、Q两点相遇时,P、Q表示的数相等
∴−2+4t=8+t,
解得:t=,
∴当t=时,P、Q相遇,
此时,8+t=8+,
∴相遇点表示的数为;
(3)∵t秒后, PQ=|(−2+4t)−(8+t)|=|3t−10|,
∵=×10=5,
∴|3t−10|=5,
解得:t=5或,
∴当t=5或,;
(4)∵M为的中点,N为的中点,
∴点M表示的数为 ,
点N表示的数为 ,
∴MN=,
即:线段的长不发生变化,MN=5.
【点睛】
本题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程是解题的关键 .
7.(1)G,-4或-16;(2)1.5或3或9
【分析】
(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N的距离
解析:(1)G,-4或-16;(2)1.5或3或9
【分析】
(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,在点的移动过程中注意到两个点的距离的变化.
(2)根据美好点的定义,分情况分别确定P点的位置,进而可确定t的值.
【详解】
解:(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件,
故答案是:G.
结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,点N的右侧不存在满足条件的点,点M和N之间靠近点M一侧应该有满足条件的点,进而可以确定-4符合条件.点M的左侧距离点M的距离等于点M和点N的距离的点符合条件,进而可得符合条件的点是-16.
故答案是:-4或-16.
(2)根据美好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,
第一情况:当P为【M,N】的美好点,点P在M,N之间,如图1,
当MP=2PN时,PN=3,点P对应的数为2-3=-1,因此t=1.5秒;
第二种情况,当P为【N,M】的美好点,点P在M,N之间,如图2,
当2PM=PN时,NP=6,点P对应的数为2-6=-4,因此t=3秒;
第三种情况,P为【N,M】的美好点,点P在M左侧,如图3,
当PN=2MN时,NP=18,点P对应的数为2-18=-16,因此t=9秒;
综上所述,t的值为:1.5或3或9.
【点睛】
本题考查实数与数轴、美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.
8.(1)2;(2)①-1;②或10;(3)-8和-4
【分析】
(1)根据数轴上两点之间的距离可得结果;
(2)①根据点P相对于A、B的不同位置分类讨论即可;
②分点P在点A的左侧,点P在A、B之间,
解析:(1)2;(2)①-1;②或10;(3)-8和-4
【分析】
(1)根据数轴上两点之间的距离可得结果;
(2)①根据点P相对于A、B的不同位置分类讨论即可;
②分点P在点A的左侧,点P在A、B之间,点P在点B右侧三种情况,列方程求解;
(3)分点P在点A左侧,点P在A、O之间,点P在O、B之间,点P在点B右侧四种情况,列方程求解,根据结果进行判断.
【详解】
解:(1)∵点A对应的数为-6,点B在点A右侧,A,B两点间的距离为8,
∴-6+8=2,
即点B表示的数为2;
(2)①设点P表示的数为x,
当点P在点A的左侧,
PA<PB,不符合;
当点P在A、B之间,
x-(-6)=2-x+2,
解得:x=-1;
当点P在点B右侧,
PA-PB=AB=8,不符合;
故答案为:-1;
②当点P在点A的左侧,
PA<PB,不符合;
当点P在A、B之间,
x-(-6)=2(2-x),
解得:x=;
当点P在点B右侧,
x-(-6)=2(x-2),
解得:x=10;
∴P对应的数为或10;
(3)当点P在点A左侧时,
-6-x+0-x=2-x,
解得:x=-8;
当点P在A、O之间时,
x-(-6)+0-x=2-x,
解得:x=-4;
当点P在O、B之间时,
x-(-6)+x-0=2-x,
解得:x=,不符合;
当点P在点B右侧时,
x-(-6)+x-0=x-2,
解得:x=-8,不符合;
综上:点P表示的数为-8和-4.
【点睛】
本题考查了一元一次的方程的应用,利用分类讨论和数形结合的思想解决问题是本题的关键.
9.(1)a=﹣16,b=8,c=10,d=﹣12;(2)点A的运动速度为每秒4个单位长度;(3)t的值是秒或秒;(4)A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.
【分析】
(1)根据
解析:(1)a=﹣16,b=8,c=10,d=﹣12;(2)点A的运动速度为每秒4个单位长度;(3)t的值是秒或秒;(4)A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.
【分析】
(1)根据平方和绝对值的非负性即可求出结论;
(2)设点A的运动速度为每秒v个单位长度,根据题意,列出一元一次方程即可求出结论;
(3)根据题意,画出对称轴,然后用t表示点A、B、C表示的数,最后分类讨论列出方程即可求出结论;
(4)求出B点运动至A点所需的时间,然后根据点A和点B相遇的情况分类讨论,列出方程求出t的值即可求出结论.
【详解】
(1)∵(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|,
(a+16)2+(d+12)2+|b﹣8|+|c﹣10|=0,
∴a=﹣16,b=8,c=10,d=﹣12;
(2)设点A的运动速度为每秒v个单位长度,
4v+4×2=8+16,
v=4,
答:点A的运动速度为每秒4个单位长度;
(3)如图1,
t秒时,点A表示的数为:﹣16+4t,
点B表示的数为:8+2t,
点C表示的数为:10+t.
∵2AB=CD,
①2[(﹣16+4t)﹣(8+2t)]=10+t+12,
2(﹣24+2t)=22+t,
﹣48+4t=22+t,
3t=70,
t;
②2[(8+2t)﹣(﹣16+4t)]=10+t+12,
2(24﹣2t)=22+t,
5t=26,
t,
综上,t的值是秒或秒;
(4)B点运动至A点所需的时间为12(s),故t≤12,
①由(2)得:
当t=4时,A,B两点同时到达的点表示的数是﹣16+4×4=0;
②当点A从点C返回出发点时,若与B相遇,
由题意得:6.5(s),3.25(s),
∴点A到C,从点C返回到出发点A,用时6.5+3.25=9.75(s),
则2×4×(t﹣6.5)=10﹣8+2t,
t=9<9.75,
此时A,B两点同时到达的点表示的数是8﹣9×2=﹣10;
③当点A第二次从出发点返回点C时,若与点B相遇,则
8(t﹣9.75)+2t=16+8,
解得:t=10.2;
综上所述:A,B两点同时到达的点在数轴上表示的数为:0或9或10.2.
【点睛】
此题考查的是一元一次方程的应用、数轴与动点问题,掌握平方、绝对值的非负性、行程问题公式和分类讨论的数学思想是解决此题的关键.
10.(1)①3,②是,理由见解析;(2)t=5秒或69秒时,OC平分∠DOE;理由见解析;(3)经秒时,OC平分∠DOB.画图说明理由见解析.
【分析】
(1)①根据题意可直接求解;
②根据题意易得∠C
解析:(1)①3,②是,理由见解析;(2)t=5秒或69秒时,OC平分∠DOE;理由见解析;(3)经秒时,OC平分∠DOB.画图说明理由见解析.
【分析】
(1)①根据题意可直接求解;
②根据题意易得∠COE=∠AOE,问题得证;
(2)根据题意先求出射线OC绕点O旋转一周的时间,设经过x秒时,OC平分∠DOE,然后由题意分类列出方程求解即可;
(3)由(2)可得OD比OC早与OB重合,设经过x秒时,OC平分∠DOB,根据题意可列出方程求解.
【详解】
(1)①∵∠AOC=30°,∠AOB=180°,
∴∠BOC=∠AOB﹣∠AOC=150°,
∵OD平分∠BOC,
∴∠BOD=BOC=75°,
∴t=;
故答案为3;
②是,理由如下:
∵转动3秒,∴∠AOE=15°,
∴∠COE=∠AOC﹣∠AOE=15°,
∴∠COE=∠AOE,
即OE平分∠AOC.
(2)三角板旋转一周所需的时间为==72(秒),射线OC绕O点旋转一周所需的时间为=45(秒),
设经过x秒时,OC平分∠DOE,
由题意:①8x﹣5x=45﹣30,
解得:x=5,
②8x﹣5x=360﹣30+45,
解得:x=125>45,不合题意,
③∵射线OC绕O点旋转一周所需的时间为=45(秒),45秒后停止运动,
∴OE旋转345°时,OC平分∠DOE,
∴t==69(秒),
综上所述,t=5秒或69秒时,OC平分∠DOE.
(3)如图3中,由题意可知,
OD旋转到与OB重合时,需要90÷5=18(秒),OC旋转到与OB重合时,需要(180﹣30)÷8=(秒),
所以OD比OC早与OB重合,
设经过x秒时,OC平分∠DOB,
由题意:8x﹣(180﹣30)=(5x﹣90),
解得:x=,
所以经秒时,OC平分∠DOB.
【点睛】
本题主要考查角的和差关系及角平分线的定义,关键是根据线的运动得到角的等量关系,然后根据题意列出式子计算即可.
11.(1)50°;(2)20°;(3)15°或52.5°.
【分析】
(1)利用余角的定义可求解;
(2)由平角的定义及角平分线的定义求解的度数,进而可求解;
(3)可分两种情况:①当在的内部时,②当在
解析:(1)50°;(2)20°;(3)15°或52.5°.
【分析】
(1)利用余角的定义可求解;
(2)由平角的定义及角平分线的定义求解的度数,进而可求解;
(3)可分两种情况:①当在的内部时,②当在的外部时,根据角的和差可求解.
【详解】
解:(1)由题意得,
,
,
故答案为;
(2),,
,
平分,
,
,
,
故答案为;
(3)①当在的内部时,
,而,
,
,,
,
又,
,
;
②当在的外部时,
,而,
,
,,
,
又,
,
,
综上所述:的度数为或.
【点睛】
本题主要考查余角的定义,角的和差,角平分线的定义等知识的综合运用,分类讨论是解题的关键.
12.(1)90°;(2)①s;②12s
【分析】
(1)由角平分线的定义结合平角的定义可直接求解;
(2)①结合角平分线的定义,平角的定义列方程,解方程结可求解;
②结合角平分线的定义,平角的定义列方程
解析:(1)90°;(2)①s;②12s
【分析】
(1)由角平分线的定义结合平角的定义可直接求解;
(2)①结合角平分线的定义,平角的定义列方程,解方程结可求解;
②结合角平分线的定义,平角的定义列方程,解方程结可求解.
【详解】
解:(1)∵OD平分∠AOC,OE平分∠COB,
∴∠COD=∠AOC,∠COE=∠BOC,
∵∠AOC+∠BOC=180°,
∴∠DOE=∠COD+∠COE=90°;
(2)①由题意得:∵∠DOE=90°,
∴当OC平分∠DOE时,∠C′OD′=∠C′OE′=45°,
45°+60°-3t+9t+60°=180°,
解得t=,
故t为s时,射线OC平分∠DOE;
②由题意得:∵∠BOE=60°,
∴当OC平分∠BOE时,∠C′OE=∠C′OB=30°,
30+3t+90°+2(120-9t)=180°,
解得t=12,
故t为12s时,射线OC平分∠BOE.
【点睛】
本题主要考查一元一次方程的应用,角平分线的定义,角的计算等知识的综合运用,列方程求解角的度数是解题的关键.
13.(1)见解析;(2);(3)旋转时间为15秒或秒时,PB、PC、PD其中一条射线平分另两条射线的夹角.
【分析】
(1)结合题意利用直角三角形的两个锐角互余,即可证明.
(2)结合题意根据角平分线的
解析:(1)见解析;(2);(3)旋转时间为15秒或秒时,PB、PC、PD其中一条射线平分另两条射线的夹角.
【分析】
(1)结合题意利用直角三角形的两个锐角互余,即可证明.
(2)结合题意根据角平分线的定义,利用各角之间的等量关系即可求解.
(3)设t秒时,其中一条射线平分另两条射线的夹角.根据题意求出t的取值范围,再根据情况讨论,利用数形结合的思想列一元一次方程,求解即可.
【详解】
(1)∵两个三角板形状、大小完全相同,
∴,
又∵,
∴,
∴.
(2)根据题意可知,
∵,,
∴,
又∵,
∴.
(3)设t秒时,其中一条射线平分另两条射线的夹角,
∵当PA转到与PM重合时,两三角板都停止转动,
∴秒.
分三种情况讨论:
当PD平分时,根据题意可列方程,解得t=15秒<36秒,符合题意.
当PC平分时,根据题意可列方程,解得t=秒<36秒,符合题意.
当PB平分时,根据题意可列方程,解得t=秒>36秒,不符合题意舍去.
所以旋转时间为15秒或秒时,PB、PC、PD其中一条射线平分另两条射线的夹角.
展开阅读全文