1、2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的1(5分)已知集合A=1,2,3,4,5,B=(x,y)|xA,yA,xyA,则B中所含元素的个数为()A3B6C8D102(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A12种B10种C9种D8种3(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为1Ap2,p3Bp1,p2Cp2
2、,p4Dp3,p44(5分)设F1、F2是椭圆E:+=1(ab0)的左、右焦点,P为直线x=上一点,F2PF1是底角为30的等腰三角形,则E的离心率为()ABCD5(5分)已知an为等比数列,a4+a7=2,a5a6=8,则a1+a10=()A7B5C5D76(5分)如果执行右边的程序框图,输入正整数N(N2)和实数a1,a2,an,输出A,B,则()AA+B为a1,a2,an的和B为a1,a2,an的算术平均数CA和B分别是a1,a2,an中最大的数和最小的数DA和B分别是a1,a2,an中最小的数和最大的数7(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体
3、的体积为()A6B9C12D188(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()ABC4D89(5分)已知0,函数f(x)=sin(x+)在区间,上单调递减,则实数的取值范围是()ABCD(0,210(5分)已知函数f(x)=,则y=f(x)的图象大致为()ABCD11(5分)已知三棱锥SABC的所有顶点都在球O的表面上,ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()ABCD12(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A1ln2BC1+ln2D二填
4、空题:本大题共4小题,每小题5分13(5分)已知向量夹角为45,且,则= 14(5分)设x,y满足约束条件:;则z=x2y的取值范围为 15(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 16(5分)数列an满足an+1+(1)nan=2n1,则an的前60项和为 三、解答题:解答应写出文字说明,证明过程或演算步骤17(12分)已知a,b,c分别为ABC三个内角A,B,C的对边,acosC+
5、asinCbc=0(1)求A;(2)若a=2,ABC的面积为;求b,c18(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,nN)的函数解析式(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花
6、店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由19(12分)如图,直三棱柱ABCA1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1BD(1)证明:DC1BC;(2)求二面角A1BDC1的大小20(12分)设抛物线C:x2=2py(p0)的焦点为F,准线为l,AC,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若BFD=90,ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值21(12分)已知函数f(x)满足f(x)=f(1)ex1f(0)x+x2;(
7、1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22(10分)如图,D,E分别为ABC边AB,AC的中点,直线DE交ABC的外接圆于F,G两点,若CFAB,证明:(1)CD=BC;(2)BCDGBD23选修44;坐标系与参数方程已知曲线C1的参数方程是(为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,)(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围24已知函数f(x)=|x+a|+|x2|当a=3时,求不等式f(x)3的解集;f(x)|x4|若的解集包含1,2,求a的取值范围第4页(共4页)