1、2017年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1(5分)已知集合A=x|x1,B=x|3x1,则()AAB=x|x0BAB=RCAB=x|x1DAB=2(5分)如图,正方形ABCD内的图形来自中国古代的太极图正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称在正方形内随机取一点,则此点取自黑色部分的概率是()ABCD3(5分)设有下面四个命题p1:若复数z满足R,则zR;p2:若复数z满足z2R,则zR;p3:若复数z1,z2满足z1z2R,则z1=;p4:若复数zR,则R其中的真命
2、题为()Ap1,p3Bp1,p4Cp2,p3Dp2,p44(5分)记Sn为等差数列an的前n项和若a4+a5=24,S6=48,则an的公差为()A1B2C4D85(5分)函数f(x)在(,+)单调递减,且为奇函数若f(1)=1,则满足1f(x2)1的x的取值范围是()A2,2B1,1C0,4D1,36(5分)(1+)(1+x)6展开式中x2的系数为()A15B20C30D357(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A10B12C14D168(5分)
3、如图程序框图是为了求出满足3n2n1000的最小偶数n,那么在和两个空白框中,可以分别填入()AA1000和n=n+1BA1000和n=n+2CA1000和n=n+1DA1000和n=n+29(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D把C1上各点的横坐标缩短到原
4、来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A16B14C12D1011(5分)设x、y、z为正数,且2x=3y=5z,则()A2x3y5zB5z2x3yC3y5z2xD3y2x5z12(5分)几位大学生响应国家的创业号召,开发了一款应用软件为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,
5、4,8,16,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推求满足如下条件的最小整数N:N100且该数列的前N项和为2的整数幂那么该款软件的激活码是()A440B330C220D110二、填空题:本题共4小题,每小题5分,共20分13(5分)已知向量,的夹角为60,|=2,|=1,则|+2|= 14(5分)设x,y满足约束条件,则z=3x2y的最小值为 15(5分)已知双曲线C:=1(a0,b0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点若MAN=60,则C的离心率为 16(5分)如图,圆形纸片的圆心为O,半径为5
6、cm,该纸片上的等边三角形ABC的中心为OD、E、F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D、E、F重合,得到三棱锥当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第1721题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答17(12分)ABC的内角A,B,C的对边分别为a,b,c,已知ABC的面积为(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求ABC的周长18(
7、12分)如图,在四棱锥PABCD中,ABCD,且BAP=CDP=90(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,APD=90,求二面角APBC的余弦值19(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(,2)(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(3,+3)之外的零件数,求P(X1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,+3)之外的零件,就认为这条生产线在这一天的生产过程可能出
8、现了异常情况,需对当天的生产过程进行检查()试说明上述监控生产过程方法的合理性;()下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得=9.97,s=0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,16用样本平均数作为的估计值,用样本标准差s作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(3+3)之外的数据,用剩下的数据估计和(精确到0.01)附:若随机变量Z服从正态分布N(,2),则P(3Z+3)=0.9974,0.99
9、74160.9592,0.0920(12分)已知椭圆C:+=1(ab0),四点P1(1,1),P2(0,1),P3(1,),P4(1,)中恰有三点在椭圆C上(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点若直线P2A与直线P2B的斜率的和为1,证明:l过定点21(12分)已知函数f(x)=ae2x+(a2)exx(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围选修4-4,坐标系与参数方程22(10分)在直角坐标系xOy中,曲线C的参数方程为,(为参数),直线l的参数方程为 ,(t为参数)(1)若a=1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a选修4-5:不等式选讲23已知函数f(x)=x2+ax+4,g(x)=|x+1|+|x1|(1)当a=1时,求不等式f(x)g(x)的解集;(2)若不等式f(x)g(x)的解集包含1,1,求a的取值范围第4页(共4页)