资源描述
概率论与数理统计练习题
系 专业 班 姓名 学号
第一章 随机事件及其概率(一)
一.选择题
1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ]
(A)不可能事件 (B)必然事件 (C)随机事件 (D)样本事件
2.下面各组事件中,互为对立事件的有 [ B ]
(A){抽到的三个产品全是合格品} {抽到的三个产品全是废品}
(B){抽到的三个产品全是合格品} {抽到的三个产品中至少有一个废品}
(C){抽到的三个产品中合格品不少于2个} {抽到的三个产品中废品不多于2个}
(D){抽到的三个产品中有2个合格品} {抽到的三个产品中有2个废品}
3.下列事件与事件不等价的是 [ C ]
(A) (B) (C) (D)
4.甲、乙两人进行射击,A、B分别表示甲、乙射中目标,则表示 [ C ]
(A)二人都没射中 (B)二人都射中
(C)二人没有都射着 (D)至少一个射中
5.以表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件为. [ D ]
(A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”;
(C)“甲种产品滞销”; (D)“甲种产品滞销或乙种产品畅销
6.设,则表示 [ A ]
(A) (B)
(C) (D)
7.在事件,,中,和至少有一个发生而不发生的事件可表示为 [ A ]
(A); (B);
(C); (D).
8、设随机事件满足,则 [ D ]
(A)互为对立事件 (B) 互不相容
(C) 一定为不可能事件 (D) 不一定为不可能事件
二、填空题
1.若事件A,B满足,则称A与B 互斥或互不相容 。
2.“A,B,C三个事件中至少发生二个”此事件可以表示为 。
三、简答题:
1.写出下列随机试验的样本空间。
(1)一盒内放有四个球,它们分别标上1,2,3,4号。现从盒这任取一球后,不放回盒中,再从盒中任取一球,记录两次取球的号码。
(2)将(1)的取球方式改为第一次取球后放回盒中再作第二次取球,记录两次取球的号码。
(3)一次从盒中任取2个球,记录取球的结果。
2.设A、B、C为三个事件,用A、B、C的运算关系表示下列事件。
(1)A、B、C中只有A发生; (2)A不发生,B与C发生;
(3)A、B、C中恰有一个发生; (4)A、B、C中恰有二个发生;
(5)A、B、C中没有一个发生; (6)A、B、C中所有三个都发生;
(7)A、B、C中至少有一个发生; (8)A、B、C中不多于两个发生。
概率论与数理统计练习题
系 专业 班 姓名 学号
第一章 随机事件及其概率(二)
一、 选择题:
1.掷两颗均匀的骰子,事件“点数之和为3”的概率是 [ B ]
(A) (B) (C) (D)
2.袋中放有3个红球,2个白球,第一次取出一球,不放回,第二次再取一球,则两次都是红球的概率是 [ B ]
(A) (B) (C) (D)
3. 已知事件A、B满足,则 [ B ]
(A) (B)
(C) (D)
4.A、B为两事件,若,则 [ B ]
(A) (B)
(C) (D)
5.有6本中文书和4本外文书,任意往书架摆放,则4本外文书放在一起的概率是 [ D ]
(A) (B) (C) (D)
二、选择题:
1.设A和B是两事件,则
2.设A、B、C两两互不相容,,则 0.5
3.若,则 0.8 。
4.设两两独立的事件A,B,C满足条件,,且已知
,则。.
5.设,,则A、B、C全不发生的概率为 。
6.设A和B是两事件,,,则 0.54 。
三、计算题:
1.罐中有12颗围棋子,其中8颗白子,4颗黑子,若从中任取3颗,求:
(1)取到的都是白子的概率;
(2)取到的两颗白子,一颗黑子的概率;
(3)取到的3颗中至少有一颗黑子的概率;
(4)取到的3颗棋子颜色相同的概率。
2.加工某一零件共需经过4道工序,设第一、二、三和四道工序的次品率分别为2%、3%、5%和3%,假定各道工序是互不影响的,求加工出来的零件的次品率。
3.袋中人民币五元的2张,二元的3张和一元的5张,从中任取5张,求它们之和大于12元的概率。
解:要使它们之和大于12元,必须有两张5元,其余可任意取。则
概率论与数理统计练习题
系 专业 班 姓名 学号
第一章 随机事件及其概率(三)
一、 选择题:
1.设A、B为两个事件,,且,则下列必成立是 [ A ]
(A) (D) (C) (D)
2.设盒中有10个木质球,6个玻璃球,木质球有3个红球,7个蓝色;玻璃球有2个红色,4个蓝色。现在从盒中任取一球,用A表示“取到蓝色球”,B表示“取到玻璃球”,则P(B|A)=[ D ]。
(A) (B) (C) (D)
3.设A、B为两事件,且均大于0,则下列公式错误的是 [ B ]
(A) (B)
(C) (D)
4.设10件产品中有4件不合格品,从中任取2件,已知所取的2件产品中有一件是不合格品,则另一件也是不合格品的概率为 [ B ]
(A) (B) (C) (D)
5.设A、B为两个随机事件,且,则必有 [ C ]
(A) (B)
(C) (D)
二、填空题:
1.设A、B为两事件,,则 1/6
2.设,则 0.6
3.若,则 0.75
4.某产品的次品率为2%,且合格品中一等品率为75%。如果任取一件产品,取到的是一等品的概率为 0.735
5.已知为一完备事件组,且
,则 1/18
三、计算题:
1.某种动物由出生活到10岁的概率为0.8,活到12岁的概率为0.56,求现年10岁的该动物活到12岁的概率是多少?0.56/0.8=0.7
解:设A=“活到10岁” B =“活到12岁“
2.某产品由甲、乙两车间生产,甲车间占60%,乙车间占40%,且甲车间的正品率为90%,乙车间的正品率为95%,求:
(1)任取一件产品是正品的概率;
(2)任取一件是次品,它是乙车间生产的概率。
解:设A1 =“甲车间生产的产品” A2 =“乙车间生产的产品” B =“正品”
(1)
(2)
3.为了防止意外,在矿内同时设有两报警系统A与B,每种系统单独使用时,其有效的概率系统A为0.92,系统B为0.93,在A失灵的条件下,B有效的概率为0.85,求:
(1)发生意外时,这两个报警系统至少一个有效的概率;
(2)B失灵的条件下,A有效的概率。
解:(1)
(2)
4.某酒厂生产一、二、三等白酒,酒的质量相差甚微,且包装一样,唯有从不同的价格才能区别品级。厂部取一箱给销售部做样品,但忘了标明价格,只写了箱内10瓶一等品,8瓶二等品,6瓶三等品,销售部主任从中任取1瓶,请3位评酒专家品尝,判断所取的是否为一等品。专家甲说是一等品,专家乙与丙都说不是一等品,而销售主任根据平时资料知道甲、乙、丙3位专家判定的准确率分别为。问懂得概率论的主任该作出怎样的裁决?
解:记从箱中取出的一瓶为一等品 甲判定取出的一瓶为一等品
乙判定取出的一瓶为一等品 丙判定取出的一瓶为一等品
则本题要解决的是计算和.
由贝叶斯公式得
其中,此外由相互独立得
所以,
于是,销售部主任可以根据远远大于裁决:所取的一瓶不是一等品.
概率论与数理统计练习题
系 专业 班 姓名 学号
第一章 随机事件及其概率(四)
一、 选择题:
1.设A,B是两个相互独立的事件,,则一定有 [ B ]
(A) (B) (C) (D)
2.甲、乙两人各自考上大学的概率分别为0.7,0.8,则两人同时考上大学的概率是 [ B ]
(A)0.75 (B)0.56 (C)0.50 (D)0.94
3.某人打靶的命中率为0.8,现独立的射击5次,那么5次中有 2次命中的概率是 [ D ]
(A) (B) (C) (D)
4.设A,B是两个相互独立的事件,已知,则 [ C ]
(A) (B) (C) (D)
5.若A,B之积为不可能事件,则称A 与B [ B ]
(A)独立 (B)互不相容 (C)对立 (D)构成完备事件组
二、填空题:
1.设与是相互独立的两事件,且,则 0.12
2.设事件A,B独立。且,则A,B至少一个发生的概率为 0.82
3.设有供水龙头5个,每一个龙头被打开的可能为0.1,则有3个同时被打开的概率为 0.0081
4.某批产品中有20%的次品,进行重复抽样调查,共取5件样品,则5件中恰有2件次品的概率为 0.2048 ,5件中至多有2件次品的概率 0.94208 。
三、计算题:
1.设某人打靶,命中率为0.6,现独立地重复射击6次,求至少命中两次的概率。0.959
解:所求的概率为
2.某类灯泡使用寿命在1000个小时以上的概率为0.2,求三个灯泡在使用1000小时以后最多只坏一个的概率。0.104
解:设A =“灯泡使用寿命在1000个小时以上”, 则
所求的概率为
3.甲、乙、丙3人同时向一敌机射击,设击中敌机的概率分别为0.4,0.5,0.7。如果只有一人击中飞机,则飞机被击落的概率是0.2;如果2人击中飞机,则飞机被击落的概率是0.6;如果3人都击飞机,则飞机一定被击落,求飞机被击落的概率。0.458
解:设A =“甲击中敌机” B =“乙击中敌机” C =“丙击中敌机”
Dk =“k人击中飞机”(k =1,2,3) H =“敌机被击中”
4.一质量控制检查员通过一系列相互独立的在线检查过程(每一过程有一定的持续时间)以检查新生产元件的缺陷。已知若缺陷确实存在,缺陷在任一在线检查过程被查出的概率为。
(1)求缺陷在第二个过程结束前被查出的概率(缺陷若在一个过程查出就不再进行下一个过程);
(2)求缺陷在第个过程结束之前被查出的概率;
(3)若缺陷经3个过程未被查出,该元件就通过检查,求一个有缺陷的元件通过检查的概率;
注:(1)、(2)、(3)都是在缺陷确实存在的前提下讨论的。
(4)设随机地取一元件,它有缺陷的概率为,设当元件无缺陷时将自动通过检查,求在(3)的假设下一元件通过检查的概率;
(5)已知一元件已通过检查,求该元件确实是有缺陷的概率(设)。
解:以记事件“缺陷在第个过程被检出”。按题设且相互独立。
(1)按题意所讨论的事件为,缺陷在第一个过程就被查出或者缺陷在第一个过程未被查出但在第二个过程被查出,即,因而所求概率为
(2)与(1)类似可知所求概率为
(3)所求概率为
(4)以记事件“元件是有缺陷的”,所求概率为
元件有缺陷且3次检查均未被查出元件无缺陷
(5)所求概率为
5.设A,B为两个事件,,证明A与B独立。
证: 由于
已知
有
即
所以 A与B独立
概率论与数理统计练习题
系 专业 班 姓名 学号
第一章 随机事件及其概率(五)
一、选择题:
1.对于任意两个事件A和B [ B ]
(A)若,则A,B一定独立 (B)若,则A,B有可能独立
(C)若,则A,B一定独立 (D)若,则A,B一定不独立
2.设,则 [ D ]
(A)事件A和B互不相容 (B)事件A和B互相对立
(C)事件A和B互不独立 (D)事件A和B相互独立
3.设A,B为任意两个事件且,,则下列选项必然成立的是 [ B ]
(A) (B)
(C) (D)
二、填空题:
1.已知A,B为两个事件满足,且,则
2.设两两独立的事件A,B,C满足条件,,且已知
,则 1/4
3.假设一批产品中一,二,三等品各占60%,30%,10%,从中任意取出一件,结果不是三等品,则取到的是一等品的概率是 2/3
三、计算题:
1.设两个相互独立的事件都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,求A发生的概率 2/3
解:已知 又
而
所以,有
故
2.如果一危险情况发生时,一电路闭合并发出警报,我们可以借用两个或多个开关并联以改善可靠性。在发生时这些开关每一个都应闭合,且若至少一个开关闭合了,警报就发出。如果两个这样的开关并联连接,它们每个具有的可靠性(即在情况发生时闭合的概率),问这时系统的可靠性(即电路闭合的概率)是多少?如果需要有一个可靠性至少为的系统,则至少需要用多少只开关并联?设各开关闭合与否是相互独立的。
解:以表示事件“第只开关闭合”,已知,由此可得两只这样的开关并联而电路闭合的概率为(注意各开关闭合与否是相互独立的)
设需要只这样的开关并联,此时系统可靠性,注意到且由的独立性推得也相互独立。故
要使即要使,故有
因为整数,故即至少要用3只开关并联。
3.将三个字母之一输入信道,输出为原字母的概率为,而输出为其他一字母的概率为。今将字母串之一输入信道,输入的概率分别为,已知输出为,问输入的是的概率是多少?(设信道传输各个字母的工作是相互独立的)
解:以分别表示事件“输入”、“输入”、“输入”,以表示事件“输出”。因事件两两互不相容,且有
,
因此全概率公式和贝叶斯公式可以使用。由贝叶斯公式有
在输入为(即事件)输出(即事件)时,有两个字母为原字母,另两字母为其他字母,所以同理代入上式并注意到
得到
4.一条自动生产线连续生产n件产品不出故障的概率为,假设产品的优质率为。如果各件产品是否为优质品相互独立。求:
(1)计算生产线在两次故障间共生产k件(k = 0,1,2,…)优质品的概率;
(2)若已知在某两次故障间该生产线生产了k件优质品,求它共生产m件产品的概率。
解:设An =“连续生产n件产品不出故障” B =“两次故障间生产k件优质品”
(1) ().
(2).
概率论与数理统计练习题
系 专业 班 姓名 学号
第二章 随机变量及其分布(一)
一.选择题:
1.设X是离散型随机变量,以下可以作为X的概率分布是 [ B ]
(A) (B)
(C) (D)
2.设随机变量ξ的分布列为 为其分布函数,则= [ C ]
(A)0.2 (B)0.4 (C)0.8 (D)1
二、填空题:
1.设随机变量X 的概率分布为 ,则a = 0.3
2.某产品15件,其中有次品2件。现从中任取3件,则抽得次品数X的概率分布为
P{X=0}=22/35; P{X=1}=12/35; P{X=2}=1/35
3.设射手每次击中目标的概率为0.7,连续射击10次,则击中目标次数X的概率分布为
P{X=k}=, 或X~B(10,0.7)
三、计算题:
1.同时掷两颗骰子,设随机变量X为“两颗骰子点数之和”求:
(1)X的概率分布; (2); (3)
(1) P{X=2}= P{X=12}=1/36; P{X=3}= P{X=11}=1/18;
P{X=4}= P{X=10}=1/12; P{X=5}= P{X=9}=1/9;
P{X=6}= P{X=8}=5/36; P{X=7}=1/6
(2) P{X=2}=1/36; P{X=3}=1/18
(3) P{X>12}=0
2.产品有一、二、三等品及废品四种,其中一、二、三等品及废品率分别为60%,10%,20%及10%,任取一个产品检查其质量,试用随机变量X描述检查结果。
记X=4表示产品为废品;X=1,2,3分别指产品为一、二、三等品。
P{X=1}=0.6; P{X=2}=0.1; P{X=3}=0.2; P{X=4}=0.1
3.已知随机变量X只能取,0,1,2四个值,相应概率依次为,试确定常数c,并计算
c=37/16; P{X<1}=20/37
4.一袋中装有5只球编号1,2,3,4,5。在袋中同时取3只,以X表示取出的3只球中最大号码,写出随机变量X的分布律和分布函数。
P{X=3}=0.1; P{X=4}=0.3; P{X=5}=0.6;
5.设随机变量,若,求
P{Y>1}=19/27
概率论与数理统计练习题
系 专业 班 姓名 学号
第二章 随机变量及其分布(二)
一、选择题:
1.设连续性随机变量X的密度函数为,则下列等式成立的是 [ A ]
(A) (B) (C) (D)
2.设连续性随机变量X的密度函数为,则常数 [ A ]
(A) (B) (C) (D)
3.设,要使,则 [ C ]
(A) (B) (C) (D)
4.设,,则下列等式不成立的是 [ C ]
(A) (B) (C) (D)
5.X服从参数的指数分布,则 [ C ]
(A) (B) (C) (D)
二、填空题:
1.设连续性随机变量X的密度函数为,则常数A = 3
2.设随机变量,已知,则 0.1
三、计算题:
1.设求和
=1; =0.5
2.设随机变量X的密度函数为,且
求:(1)常数 (2) (3)X的分布函数
(3)
3.设某种电子元件的使用寿命X(单位:h)服从参数的指数分布,现某种仪器使用三个该电子元件,且它们工作时相互独立,求:
(1)一个元件时间在200h以上的概率;
(2)三个元件中至少有两个使用时间在200h以上的概率。
概率论与数理统计练习题
系 专业 班 姓名 学号
第二章 随机变量及其分布(三)
1.已知X的概率分辨为 ,试求:
(1)常数a; (2)的概率分布。
(1) a=0.1
(2)P{Y=-1}=0.3; P{Y=0}=0.2; P{Y=3}=0.3 P{Y=8}=0.2
2.设随机变量X在(0,1)服从均匀分布,求:
(1)的概率密度;
(2)的概率密度。
3.设,求:
(1)的概率密度;
(2)的概率密度。
4.设随机变量X的概率密度为,求的概率密度。
概率论与数理统计练习题
系 专业 班 姓名 学号
第三章 多维随机变量及其分布(一)
一、填空题:
1、设二维随机变量的联合密度函数为,则常数 6 。
2、设二维随机变量的联合分布函数为,则常数 。
二、计算题:
1.在一箱子中装有12只开关,其中2只次品,在其中取两次,每次任取一只,考虑两种实验:
(1)放回抽样;(2)不放回抽样。我们定义随机变量X,Y如下:
,
试分别就(1),(2)两种情况,写出X和Y的联合分布律。
(1)放回抽样
Y 0 1
X
0 25/36 5/36
1 5/36 1/36
(2)不放回抽样
Y 0 1
X
0 15/22 5/33
1 5/33 1/66
2.设二维离散型随机变量的联合分布见表:试求
(1), (2)
Y
X
(1)1/4 (2)5/16
Y 0
X
1 1/4 1/4
2 1/6 a
3.设随机变量的联合分布律如表:
求:(1)a值; (2)的联合分布函数
(3)关于X,Y的边缘分布函数和
(1)a=1/3
(2)
(3)
4.设随机变量的概率密度为,求:
(1)常数k; (2)求; (3); (4)
(1)
(2)
(3)
(4)
概率论与数理统计练习题
系 专业 班 姓名 学号
第三章 多维随机变量及其分布(二)
一、选择题:
1、设随机变量与独立,且,则仍服从正态分布,且有 [ D ]
(A) (B)
(C) (D)
2、若服从二维均匀分布,则 [ B ]
(A)随机变量都服从均匀分布 (B)随机变量不一定服从均匀分布
(C)随机变量一定不服从均匀分布 (D)随机变量服从均匀分布
二、填空题:
1、设二维随机变量的密度函数为,
则 。
2、设随机变量同分布,的密度函数为,设与相互独立,且,则 。
三、计算题:
1.已知,X与Y独立,确定a,b的值,求出的联合概率分布以及的概率分布。
Y -1 -2 -3
X
1 216/539 54/539 24/539
2 108/539 27/539 12/539
3 72/539 18/539 8/539
2.随机变量与的联合密度函数为,分别求下列概率密度函数:(1); (2); (3)。
解:(1)的可能值为
(2)
当时
当时.
(3)当时
当时.
3.设与是独立同分布的随机变量,它们都服从均匀分布。试求
(1)的分布函数与概率密度函数;
(2)的概率密度函数。
解:(1)的分布函数为
的概率密度函数为
(2)的分布函数为
的概率密度函数为
4.设X和Y相互独立,其概率密度函数分别为,,求:(1)常数A, (2)随机变量的概率密度函数。
被积函数非零区域为
因此有
概率论与数理统计练习题
系 专业 班 姓名 学号
第四章 随机变量的数字特征(一)
一、选择题:
1.设随机变量X,且存在,则是 [ B ]
(A)X的函数 (B)确定常数 (C)随机变量 (D)x的函数
2.设X的概率密度为,则 [ C ]
(A) (B) (C) (D)1
3.设是随机变量,存在,若,则 [ D ]
(A) (B) (C) (D)
二、填空题:
1.设随机变量X的可能取值为0,1,2,相应的概率分布为0.6 , 0.3 , .01,则 0.5
2.设X为正态分布的随机变量,概率密度为,则 9
X 0 1 2
P 1/5 1/6 1/5 1/15 11/30
3.设随机变量X的概率分布 ,则
4.设随机变量X的密度函数为,则 0
三、计算题:
1.袋中有5个乒乓球,编号为1,2,3,4,5,从中任取3个,以X表示取出的3个球中最大编号,求
2.设随机变量X的密度函数为,求
3.设随机变量,求
4.设随机变量X的密度函数为,试求下列随机变量的数学期望。
(1); (2); (3)
解:(1)
(2),
(3)
概率论与数理统计练习题
系 专业 班 姓名 学号
第四章 随机变量的数字特征(二)
一、选择题:
1.已知,则 [ B ]
(A)9 (B)6 (C)30 (D)36
2.设,则有 [ D ]
(A) (B)
(C) (D)
3.设服从参数为的泊松分布,,则 [ D ]
(A) (B)
(C) (D)
二、填空题:
1.设随机变量X的可能取值为0,1,2,相应的概率分布为0.6 , 0.3 , .01,则 0.45
2.设随机变量X的密度函数为,则 2
3.随机变量X服从区间[0,2]上的均匀分布,则 1/3
4.设正态分布Y的密度函数是,则 1/2
三、计算题:
1.设随机变量X的可能取值为1,2,3,相应的概率分布为0.3 , 0.5 , .02,求:
(1)的期望与方差;
2.设随机变量,试求。
解:因为,所以(利用分部积分)。
(被积函数是奇函数)
3.设随机变量X的分布密度为,已知,求:(1)常数A,B,C的值; (2)方差; (3)随机变量的期望与方差。
概率论与数理统计练习题
系 专业 班 姓名 学号
第四章 随机变量的数字特征(三)
一、选择题:
1.对任意两个随机变量和,若,则 [ B ]
(A) (B)
(C)相互独立 (D)不相互独立
2.由即可断定 [ A ]
(A)X与Y不相关 (B)
(C)X与Y相互独立 (D)相关系数
二、填空题:
1.设随机变量服从正态分布,则= 13 。
2.设与独立,且,,则
三、计算题:
0
1
0.125
0.125
0.125
0
0.125
0
0.125
1
0125
0.125
0.125
1. 已知二维随机变量的分布律如表:
试验证与不相关,但与Y不独立。
解:下证与不相关,即
故与不相关
另外
即
则与Y不独立。
2.设,求:
解:,
3.设,且X,Y相互独立,求:
解:, ,
4.设X,Y相互独立,其密度函数分别为,,求
解:
5.(1)设随机变量。求常数使为最小,并求的最小值。
(2)设随机变量服从二维正态分布,且有。证明当时,随机变量与相互独立。
解:(1)
故
故当时取最小值,
(2)因为是二维正态变量,而与分别是的线性组合,故由维正态随机变量的性质知也是二维正态变量。现在,故知有
即知与不相关,又因是二维正态变量,故知与是相互独立的。
概率论与数理统计练习题
系 专业 班 姓名 学号
第
展开阅读全文