1、浙江省文澜中学七年级数学上册期末压轴题汇编一、七年级上册数学压轴题1如图,已知AOB=120,射线OP从OA位置出发,以每秒2的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒(1)当t=2时,求POQ的度数;(2)当POQ=40时,求t的值;(3)在旋转过程中,是否存在t的值,使得POQ=AOQ?若存在,求出t的值;若不存在,请说明理由2已知实数,在数轴上所对应的点分别为A,B,C,其中b是最小的正整数,且,满足两点之间的距离可用这
2、两点对应的字母表示,如:点A与点B之间的距离可表示为AB(1) , , ;(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B以每秒2个单位长度的速度向右运动,点C以每秒5个单位长度的速度向右运动,假设运动时间为t秒,则 , ;(结果用含t的代数式表示)这种情况下,的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值;(3)若A,C两点的运动和(2)中保持不变,点B 变为以每秒n()个单位长度的速度向右运动,当时,求n的值3数轴上有三点,给出如下定义;若其中一个点与其他两个点的距离恰好满足倍的数量关系,则称该点是其它两个点的:“关联点”(1)例
3、图,数轴上点三点所表示的数分别为,点到点的距离 ,点到点的距离是 ,因为是的两倍,所以称点是点的“关联点”(2)若点表示数点表示数,下列各数所对应的点分别是,其中是点的“关联点”的是 ;(3)点表示数,点表示数为数轴上一个动点;若点在点的左侧,且点是点的“关联点”,求此时点表示的数;若点在点的右侧,点中,有一个点恰好是其它两个点的“关联点”请直接写出此时点表示的数4已知数轴上三点,对应的数分别为,0,3,点为数轴上任意一点,其对应的数为(1)如果点到点、点的距离相等,那么的值是_(2)数轴上是否存在点,使点到点、点的距离之和是8?若存在,求出的值;若不存在,请说明理由(3)如果点以每分钟1个单
4、位长度的速度从点向右运动,同时另一点从点以每分钟2个单位长度的速度向左运动设分钟时点和点到点的距离相等,则的值为_(直接写出答案)5已知,A,B在数轴上对应的数分用a,b表示,且,数轴上动点P对应的数用x表示.(1)在数轴上标出A、B的位置,并直接写出A、B之间的距离;(2)写出的最小值;(3)已知点C在点B的右侧且BC9,当数轴上有点P满足PB2PC时,求P点对应的数的值;数轴上另一动点Q从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,点Q能移动到与中的点P重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移
5、动可以重合。6如图,在数轴上点表示数,点表示数,满足(1)求,的值;(2)若点与点之间的距离表示为,点与点之间的距离表示为,请在数轴上找一点,使,求点表示的数;(3)如图,一小球甲从点处以2个单位/秒的速度向左运动;同时另一个小球乙从点处以3个单位/秒的速度也向左运动,设运动的时间为(秒)分别表示出(秒)时甲、乙两小球在数轴上所表示的数(用含的代数式表示);求甲、乙两小球相距两个单位时所经历的时间7如图,数轴上有三个点、,表示的数分别是、,请回答:(1)若使、两点的距离与、两点的距离相等,则需将点向左移动_个单位(2)若移动、三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的
6、距离和最小的是_个单位;(3)若在表示的点处有一只小青蛙,一步跳个单位长小青蛙第次先向左跳步,第次再向右跳步,然后第次再向左跳步,第次再向右跳步按此规律继续跳下去,那么跳第次时,应跳_步,落脚点表示的数是_(4)数轴上有个动点表示的数是,则的最小值是_8点A,B为数轴上的两点,点A对应的数为a,点B对应的数为3,a38(1)求A,B两点之间的距离;(2)若点C为数轴上的一个动点,其对应的数记为x,试猜想当x满足什么条件时,点C到A点的距离与点C到B点的距离之和最小请写出你的猜想,并说明理由;(3)若P,Q为数轴上的两个动点(Q点在P点右侧),P,Q两点之间的距离为m,当点P到A点的距离与点Q到
7、B点的距离之和有最小值4时,m的值为 9如图一,点在线段上,图中有三条线段、和,若其中一条线段的长度是另外一条线段长度的倍,则称点是线段的“巧点”(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)(2)如图二,点和在数轴上表示的数分别是和,点是线段的巧点,求点在数轴上表示的数。(应用拓展)(3)在(2)的条件下,动点从点处,以每秒个单位的速度沿向点匀速运动,同时动点从点出发,以每秒个单位的速度沿向点匀速运动,当其中一点到达中点时,两个点运动同时停止,当、三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间的所有可能值10如图,两条直线AB、C
8、D相交于点O,且AOC=AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15/s,射线ON(与射线OD重合)绕O点顺时值方向旋转,速度为12/s,两射线,同时运动,运动时间为t秒(本题出现的角均指小于平角的角)(1)图中一定有_个直角;当t=2时,MON的度数为_,BON的度数为_,MOC的度数为_;(2)当0t12时,若AOM=3AON60,试求出t的值(3)当0t6时,探究的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值11如图,已知AOB120,射线OP从OA位置出发,以每秒2的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6的速度,从OB位置出发逆时针向射线
9、OA旋转,当射线OQ达到OA后,两条射线同时停止运动设旋转时间为t秒(1)分别求出当t5和t18时,POQ的度数;(2)当OP与OQ重合时,求t的值;(3)当POQ40时,求t的值12已知是关于x的二次二项式,A,B是数轴上两点,且A,B对应的数分别为a,b(1)求线段AB的中点C所对应的数;(2)如图,在数轴上方从点C出发引出射线CD,CE,CF,CG,且CF平分ACD,CG平分BCE,试猜想DCE与FCG之间是否存在确定的数量关系,并说明理由;(3)在(2)的条件下,已知DCE=20,ACE=30,当DCE绕着点C以2/秒的速度逆时针旋转t秒()时,ACF和BCG中的一个角的度数恰好是另一
10、个角度数的两倍,求t的值13如图,点O在直线AB上,(1)如图,当的一边射线OC在直线AB上(即OC与OA重合),另一边射线OD在直线AB上方时,OF是的平分线,则的度数为_(2)在图的基础上,将绕着点O顺时针方向旋转(旋转角度小于),OE是的平分线,OF是的平分线,试探究的大小如图,当的两边射线OC、OD都在直线AB的上方时,求的度数小红、小英对该问题进行了讨论:小红:先求出与的和,从而求出与的和,就能求出的度数小英:可设为x度,用含x的代数式表示、的度数,也能求出的度数请你根据她们的讨论内容,求出的度数如图,当的一边射线OC在直线AB的上方,另一边射线OD在直线AB的下方时,小红和小英认为
11、也能求出的度数你同意她们的看法吗?若同意,请求出的度数;若不同意,请说明理由如图,当的两边射线OC、OD都在直线AB的下方时,能否求出的度数?若不能求出,请说明理由;若能求出,请直接写出的度数14如图1,射线OC在的内部,图中共有3个角:、,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是的“定分线”(1)一个角的平分线_这个角的“定分线”;(填“是”或“不是”)(2)如图2,若,且射线PQ是的“定分线”,则_(用含a的代数式表示出所有可能的结果);(3)如图2,若=48,且射线PQ绕点P从PN位置开始,以每秒8的速度逆时针旋转,当PQ与PN成90时停止旋转,旋转的时间为t秒;同时射线
12、PM绕点P以每秒4的速度逆时针旋转,并与PQ同时停止当PQ是的“定分线”时,求t的值15如图,点,在数轴上所对应的数分别为5,7(单位长度为),是,间一点,两点分别从点,出发,以,的速度沿直线向左运动(点在线段上,点在线段上),运动的时间为(1)_(2)若点,运动到任一时刻时,总有,请求出的长(3)在(2)的条件下,是数轴上一点,且,求的长16定义:在同一平两内,有公共端点的三条射线中,一条射线是另两条射线组成夹角的角平分线,我们称这三条射线为“共生三线”如图为一量角器的平面示意图,为量角器的中心作射线,并将其所对应的量角器外圈刻度分别记为,(1)若射线,为“共生三线”,且为的角平分线如图1,
13、则_;当,时,请在图2中作出射线,并直接写出的值;根据的经验,得_(用含,的代数式表示)(2)如图3,在刻度线所在直线上方区域内,将,按逆时针方向绕点同时旋转,旋转速度分别为每秒,若旋转秒后得到的射线,为“共生三线”,求的值17已知点C在线段AB上,AC2BC,点D,E在直线AB上,点D在点E的左侧(1)若AB15,DE6,线段DE在线段AB上移动如图1,当E为BC中点时,求AD的长;点F(异于A,B,C点)在线段AB上,AF3AD,CF3,求AD的长;(2)若AB2DE,线段DE在直线AB上移动,且满足关系式,求的值18如图,已知,是等边三角形(三条边都相等、三个角都等于的三角形),平分(1
14、)如图1,当时,_;(2)如图2,当时,_;(3)如图3,当时,求的度数,请借助图3填空解:因为,所以,因为平分,所以_(用表示),因为为等边三角形,所以,所以_(用表示)(4)由(1)(2)(3)问可知,当时,直接写出的度数(用来表示,无需说明理由)19已知是内部的一条射线,分别为上的点,线段同时分别以的速度绕点O逆时针旋转,设旋转时间为t秒(1)如图,若,当逆时针旋转到处,若旋转时间t为2时,则_;若平分平分_;(2)如图,若分别在内部旋转时,请猜想与的数量关系,并说明理由(3)若在旋转的过程中,当时,求t的值20(背景知识)数轴是数学中的一个重要工具,利用数轴可以将数与形完美地结合,研究
15、数轴我们发现了一些重要的规律:若数轴上点A,B表示的数分别为a,b,则A,B两点之间的距离,线段的中点表示的数为(问题情境)如图,数轴上点A表示的数为,点B表示的数为8,点P从点A出发,以每秒4个单位的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒1个单位的速度向右匀速运动设运动时间为(综合运用)(1)填空:A,B两点间的距离_,线段的中点表示的数为_用含t的代数式表示:后,点P表示的数为_,点Q表示的数为_(2)求当t为何值时,P,Q两点相遇,并写出相遇点表示的数(3)求当t为何值时,(4)若M为的中点,N为的中点,点P在运动过程中,线段的长是否发生变化?若变化,请说明理由,若不变,请求
16、出线段的长【参考答案】*试卷处理标记,请不要删除一、七年级上册数学压轴题1(1)POQ =104;(2)当POQ=40时,t的值为10或20;(3)存在,t=12或或,使得POQ=AOQ【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=解析:(1)POQ =104;(2)当POQ=40时,t的值为10或20;(3)存在,t=12或或,使得POQ=AOQ【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30;(1)当t=2时,得到AOP=2t=4,BOQ=6t=12,利用POQ =AOB-AOP-BOQ求出结果即可;(2)分
17、三种情况:当0t15时,当15t20时,当20t30时,分别列出等量关系式求解即可;(3)分三种情况:当0t15时,当15t20时,当20t30时,分别列出等量关系式求解即可【详解】解:当OQ,OP第一次相遇时,2t+6t=120,t=15;当OQ刚到达OA时,6t=120,t=20;当OQ,OP第二次相遇时,2t6t=120+2t,t=30;(1)当t=2时,AOP=2t=4,BOQ=6t=12,POQ =AOB-AOP-BOQ=120-4-12=104. (2)当0t15时,2t +40+6t=120, t=10;当15t20时,2t +6t=120+40, t=20;当20t30时,2t
18、 =6t-120+40, t=20(舍去); 答:当POQ=40时,t的值为10或20. (3)当0t15时,120-8t=(120-6t),120-8t=60-3t,t=12;当15t20时,2t (120-6t)=(120 -6t),t=.当20t30时,2t (6t -120)=(6t -120),t=.答:存在t=12或或,使得POQ=AOQ.【分析】本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程2(1)-2,1,5;(2)不变,值为1;(3)或【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是
19、0,即可求得a,b,c的值;(2)用关于解析:(1)-2,1,5;(2)不变,值为1;(3)或【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)用关于t的式子表示BC和AB即可求解;(3)分别求出当t=3时,A、B、C表示的数,得到AC和BC,根据AC=2BC列出方长,解之即可【详解】解:(1),b是最小的正整数,c-5=0,a+2b=0,b=1,a=-2,b=1,c=5,故答案为:-2,1,5;(2)点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,
20、t秒后,A表示的数为-t-2,B表示的数为2t+1,C表示的数为5t+5,BC=5t+5-(2t+1)=3t+4,AB=2t+1-(-t-2)=3t+3,BC-AB=3t+4-(3t+3)=1,BC-AB的值不会随着时间t的变化而改变,BC-AB=1;(3)当t=3时,点A表示-2-3=-5,点B表示1+3n,点C表示5+53=20,AC=20-(-5)=25,BC=,AC=2BC,则25=2,则25=2(19-3n),或25=2(3n-19),解得:n=或【点睛】此题考查一元一次方程的实际运用,以及数轴与绝对值,正确理解AB,BC的变化情况是关键3(1)2,1;(2);(3)当P在点B的左侧
21、时,P表示的数为-35或或;若点P在点B的右侧,P表示的数为40或或【分析】(1)利用数轴上两点之间的距离公式直接可求得;(2)根据题意求得CA解析:(1)2,1;(2);(3)当P在点B的左侧时,P表示的数为-35或或;若点P在点B的右侧,P表示的数为40或或【分析】(1)利用数轴上两点之间的距离公式直接可求得;(2)根据题意求得CA与BC的关系,得到答案;(3)根据PA=2PB或PB=2PA列方程求解;分当P为A、B关联点、A为P、B关联点、B为A、P关联点三种情况列方程解答【详解】解:(1)三点所表示的数分别为,AB=3-1=2;BC=4-3=1,故答案是:2,1;(2)点A表示的数为-
22、2,点B表示的数为1,表示的数为-1=1 ,=2是点A,B的“关联点”点A表示的数为-2,点B表示的数为1,表示的数为2=4 ,=1不是点A,B的“关联点”点A表示的数为-2,点B表示的数为1,表示的数为4=6 ,=3是点A,B的“关联点”点A表示的数为-2,点B表示的数为1,表示的数为6=8 ,=5不是点A,B的“关联点”故答案为:(3)若点P在点B的左侧,且点P是点A,B的“关联点”,设点P表示的数为(I) 当P在点A的左侧时,则有:2PA=PB,即2(-10-)=15-解得 =-35(II)当点P在A,B之间时,有2PA=PB或PA=2PB既有2(+10)=15-或+10=2(15-)解
23、得=或因此点P表示的数为-35或或若点P在点B的右侧(I)若点P是A,B的“关联点”则有2PB=PA即2(-15)=+10解得=40(II)若点B是A,P的“关联点”则有2AB=PB或AB=2PB即2(15+10)=-15或15+10=2(x-15)解得=65或(III)若点A是B,P的“关联点”则有2AB=AP即2(15+10)=+10解得=40因此点P表示的数为40或或【点睛】本题考查了一元一次方程的应用,数轴及数轴上两点的距离、动点问题,认真理解关联点的概念,分情况讨论列式是解题关键4(1)1 (2)存在,或 (3)或【分析】(1)根据两点间的距离列方程求解即可;(2)分两种情况求解即可
24、;(3)分点P和点Q相遇时和点Q运动到点M的左侧时两种情况解析:(1)1 (2)存在,或 (3)或【分析】(1)根据两点间的距离列方程求解即可;(2)分两种情况求解即可;(3)分点P和点Q相遇时和点Q运动到点M的左侧时两种情况求解【详解】解:(1)由题意得3-x=x-(-1),解得x=1;(2)存在,MN=3-(-1)=4,点P不可能在M、N之间当点P在点M的左侧时,(-1-x)+(3-x)=8,解得x=-3;当点P在点N的右侧时,x-(-1)+(x-3)=8,解得x=5;或;(3)当点P和点Q相遇时,t+2t=3,解得t=1;当点Q运动到点M的左侧时,t+1=2t-4,解得t=5;或【点睛】
25、此题主要考查了数轴的应用以及一元一次方程的应用,分类讨论得出是解题关键5(1)A、B位置见解析,AB=30;(2)30;(3)8或-4;能,第8次【分析】(1)求出a、b的值,在数轴表示即可,求出AB的距离;(2)|x-20|+|x+10|的最小值,就是数轴上解析:(1)A、B位置见解析,AB=30;(2)30;(3)8或-4;能,第8次【分析】(1)求出a、b的值,在数轴表示即可,求出AB的距离;(2)|x-20|+|x+10|的最小值,就是数轴上表示20的点,与表示-10的点之间的距离;(3)求出c的值,设出点P对应的数,用距离列方程求解即可;点Q移动时,每一次对应的数分别列举出来,发现规
26、律,得出结论【详解】解:(1)|a-20|+(b+10)2=0,解得:a=20,b=-10;AB=20-(-10)=30;(2)|x-a|+|x-b|=|x-20|+|x+10|,当x位于点A与点B之间时,即,-10x20时,|x-20|+|x+10|的值最小,最小值为AB=30,答:|x-20|+|x+10|的最小值为30;(3)点C在点B的右侧且|BC|=9,因此点C所表示的数为-1,设点P表示的数为x,|x+10|=2|x+1|,解得x=8或x=-4;点Q每次移动对应在数轴上的数,第1次:-1,第3次:-3,第5次:-5,第2次:2,第4次:4,第6次:6,因此点Q能移动到与中的点P重合
27、的位置,与8重合时,移动第8次,不可能与-4重合,答:点Q能移动到与中的点P重合的位置,移动的次数为8次【点睛】本题考查数轴表示数的意义和方法,理解数轴上两点之间距离的计算方法,是解决问题的关键6(1)a=-2,b=6;(2)或14;(3)甲:-2-2t,乙:6-3t;6秒或10秒【分析】(1)根据非负数的性质求得a=-2,b=6;(2)分C点在线段AB上和线段AB的延长线上两种情解析:(1)a=-2,b=6;(2)或14;(3)甲:-2-2t,乙:6-3t;6秒或10秒【分析】(1)根据非负数的性质求得a=-2,b=6;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)
28、根据两个小球的运动情况直接列式即可;根据甲、乙两小球在数轴上表示的数列出关于t的方程,解方程即可【详解】解:(1),a+2=0,b-6=0,解得,a=-2,b=6,故答案为:a=-2,b=6;(2)设数轴上点C表示的数为cAC=2BC,|c-a|=2|c-b|,即|c+2|=2|c-6|AC=2BCBC,点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上当C点在线段AB上时,则有-2c6,得c+2=2(6-c),解得;当C点在线段AB的延长线上时,则有c6,得c+2=2(c-6),解得c=14故当AC=2BC时,c=或c=14;(3)甲球运动的路程为:2t=2t,OA=2,
29、甲球在数轴上表示的数为-2t-2;乙球运动的路程为:3t=3t,OB=6,乙球在数轴上表示的数为:6-3t;由题意得:,解得:t=10或t=6,甲、乙两小球相距两个单位时所经历的时间为6秒或10秒【点睛】本题考查了非负数的性质,一元一次方程,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键7(1)3;(2)3,7;(3)197,;(4)9【分析】(1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得;(2)分为三种:移动点B、C;移动点A、C;移动点A、B,再解析:(1)3;(2)3,7;(3)197,;(4)9【分析】(1)设需将点C向左
30、移动x个单位,再根据数轴的定义建立方程,解方程即可得;(2)分为三种:移动点B、C;移动点A、C;移动点A、B,再利用数轴的定义分别求出移动所走的距离和即可得;(3)先根据前4次归纳类推出一般规律,再列出运算式子,计算有理数的加减法即可得;(4)分,和数四种情况,再分别结合数轴的定义、化简绝对值即可得【详解】(1)设需将点C向左移动x个单位,由题意得:,解得,即需将点C向左移动3个单位,故答案为:3;(2),由题意,分以下三种情况:移动点B、C,把点B向左移动2个单位,点C向左移动7个单位,此时移动所走的距离和为;移动点A、C,把点A向右移动2个单位,点C向左移动5个单位,此时移动所走的距离和
31、为;移动点A、B,把点A向右移动7个单位,点B向右移动5个单位,此时移动所走的距离和为;综上,移动方法有3种,其中移动所走的距离和最小的是7个单位,故答案为:3,7;(3)第次跳的步数为,第次跳的步数为,第次跳的步数为,第次跳的步数为,归纳类推得:第n次跳的步数为,其中n为正整数,则第99次跳的步数为,落脚点表示的数为,故答案为:197,;(4)由题意,分以下四种情况:当时,则;当时,则,;当时,则,;当时,则;综上,则的最小值是9,故答案为:9【点睛】本题考查了数轴、化简绝对值、一元一次方程的应用等知识点,熟练掌握数轴的定义是解题关键8(1)5;(2)当2x3时,点C到A点的距离与点C到B点
32、的距离之和最小,最小值为5,见详解;(3)1或9【分析】(1)先根据立方根的定义求出a,再根据两点之间的距离公式即可求解;(2)当解析:(1)5;(2)当2x3时,点C到A点的距离与点C到B点的距离之和最小,最小值为5,见详解;(3)1或9【分析】(1)先根据立方根的定义求出a,再根据两点之间的距离公式即可求解;(2)当点C在数轴上A、B两点之间时,点C到A点的距离与点C到B点的距离之和最小,依此即可求解;(3)分两种情况:点P在点A的左边,点P在点B的右边,进行讨论即可求解【详解】解:(1)a38a2,AB|3(2)|5;(2)点C到A的距离为|x+2|,点C到B的距离为|x3|,点C到A点
33、的距离与点C到B点的距离之和为|x+2|+|x3|,当距离之和|x+2|+|x3|的值最小,2x3,此时的最小值为3(2)5,当2x3时,点C到A点的距离与点C到B点的距离之和最小,最小值为5;(3)设点P所表示的数为x,PQm,Q点在P点右侧,点Q所表示的数为x+m,PA|x+2|,QB|x+m3|点P到A点的距离与点Q到B点的距离之和为:PA+QB|x+2|+|x+m3|当x在2与3m之间时,|x+2|+|x+m3|最小,最小值为|2(3m)|4,2(3m)4,解得,m9,(3m)(2)4时,解得,m1,故答案为:1或9【点睛】本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的
34、距离的表示是解题的关键9(1)是;(2)10或0或20;(3) ;t=6;t=12;【分析】(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;(2)由题意设C点表示的数为解析:(1)是;(2)10或0或20;(3) ;t=6;t=12;【分析】(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;(2)由题意设C点表示的数为x,再根据新定义列出合适的方程即可;(3)根据题意先用t的代数式表示出线段AP,AQ,PQ,再根据新定义列出方程,得出合适的解即可求出t的值【详解】解:(1)因原线段是中点分成的短线段的2倍,所以线
35、段的中点是这条线段的巧点,故答案为:是;(2)设C点表示的数为x,则AC=x+20,BC=40-x,AB=40+20=60,根据“巧点”的定义可知:当AB=2AC时,有60=2(x+20),解得,x=10;当BC=2AC时,有40-x=2(x+20),解得,x=0;当AC=2BC时,有x+20=2(40-x),解得,x=20综上,C点表示的数为10或0或20;(3)由题意得,(i)、若0t10时,点P为AQ的“巧点”,有当AQ=2AP时,60-4t=22t,解得,当PQ=2AP时,60-6t=22t,解得,t=6;当AP=2PQ时,2t=2(60-6t),解得,;综上,运动时间的所有可能值有;
36、t=6;(ii)、若10t15时,点Q为AP的“巧点”,有当AP=2AQ时,2t=2(60-4t),解得,t=12;当PQ=2AQ时,6t-60=2(60-4t),解得,;当AQ=2PQ时,60-4t=2(6t-60),解得,综上,运动时间的所有可能值有:t=12;故,运动时间的所有可能值有:;t=6;t=12;【点睛】本题是新定义题,是数轴的综合题,主要考查数轴上的点与数的关系,数轴上两点间的距离,一元一次方程的应用,解题的关键是根据新定义列出方程并进行求解10(1)4;144,114,60;(2)s或10s;(3),当0t时,的值不是定值,当t6时,的值是3【分析】(1)根据两条直线AB,
37、CD相交于点O,AOC=AOD,可得图中一定解析:(1)4;144,114,60;(2)s或10s;(3),当0t时,的值不是定值,当t6时,的值是3【分析】(1)根据两条直线AB,CD相交于点O,AOC=AOD,可得图中一定有4个直角;当t=2时,根据射线OM,ON的位置,可得MON的度数,BON的度数以及MOC的度数;(2)分两种情况进行讨论:当0t7.5时,当7.5t12时,分别根据AOM=3AON-60,列出方程式进行求解,即可得到t的值;(3)先判断当MON为平角时t的值,再以此分两种情况讨论:当0t时,当t6时,分别计算的值,根据结果作出判断即可【详解】解:(1)如图所示,两条直线
38、AB,CD相交于点O,AOC=AOD,AOC=AOD=90,BOC=BOD=90,图中一定有4个直角;当t=2时,BOM=30,NON=24,MON=30+90+24=144,BON=90+24=114,MOC=90-30=60;故答案为:4;144,114,60;(2)当ON与OA重合时,t=9012=7.5(s),当OM与OA重合时,t=18015=12(s),如图所示,当0t7.5时,AON=90-12t,AOM=180-15t,由AOM=3AON-60,可得180-15t=3(90-12t)-60,解得t=;如图所示,当7.5t12时,AON=12t-90,AOM=180-15t,由A
39、OM=3AON-60,可得180-15t=3(12t-90)-60,解得t=10;综上所述,当AOM=3AON-60时,t的值为s或10s;(3)当MON=180时,BOM+BOD+DON=180,15t+90+12t=180,解得t=,如图所示,当0t时,COM=90-15t,BON=90+12t,MON=BOM+BOD+DON=15t+90+12t,=(不是定值),如图所示,当t6时,COM=90-15t,BON=90+12t,MON=360-(BOM+BOD+DON)=360-(15t+90+12t)=270-27t,=3(定值),综上所述,当0t时,的值不是定值,当t6时,的值是3【点
40、睛】本题属于角的计算综合题,主要考查了角的和差关系的运用,解决问题的关键是将相关的角用含t的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用11(1)80,24;(2)t15;(3)10或20【分析】(1)代入计算即可求解;(2)根据角度的相遇问题列出方程计算即可求解;(3)分两种情况:当0t15时;当15t20时;列解析:(1)80,24;(2)t15;(3)10或20【分析】(1)代入计算即可求解;(2)根据角度的相遇问题列出方程计算即可求解;(3)分两种情况:当0t15时;当15t20时;列出方程计算即可求解【详解】解:(1)当t5时,
41、AOP2t10,BOQ6t30,POQAOBAOPBOQ120103080;当t18时,AOP2t36,BOQ6t108,AOQ12010812,POQAOPAOQ361224;(2)当OP与OQ重合时,依题意得:2t+6t120,解得:t15;(3)当0t15时,依题意得:2t+6t+40120,解得:t10,当15t20时,依题意得:2t+6t40120,解得:t20,当POQ40时,t的值为10或20【点睛】本题考查一元一次方程的应用,解题的关键是理解题意学会由分类讨论的思想思考问题,属于中考常考题型12(1)7;(2);(3)或【分析】(1)根据是关于x的二次二项式可知,求出a、b的值
42、即为A、B对应的数,即可求出C点对应的数(2)根据角平分线可知,即可求出再根据题意可知,代入整理解析:(1)7;(2);(3)或【分析】(1)根据是关于x的二次二项式可知,求出a、b的值即为A、B对应的数,即可求出C点对应的数(2)根据角平分线可知,即可求出再根据题意可知,代入整理即可得到(3)根据题意可用t表示出和再分类讨论当时和当时,列出的关于t的一元一次方程,解出t即可【详解】(1)根据题意可得出 ,解得,即A、B对应的数分别为16、-2,C对应的数为(2)CF平分ACD,CG平分BCE,即,即故存在数量关系,为:(3),即 ,当时,即,解得:且小于65,当时,即,解得:且小于65综上可知或时符合题意【点睛】本题考查多项式的性质,角平分线的定义,一元一次方程的应用,结合分类讨论以及数形结合的思想是解答本题的关键13(1);(2);同意,;能求出,【分析】(1)由得,再由角平分线的性质求出的度数,由即可求出结果;(2)根据小红和小英的方法,利用角的互补关系和角平分线的性质去求解角度;用同上的方解析:(1);