收藏 分销(赏)

成都市实验外国语学校九年级上册压轴题数学模拟试卷含详细答案.doc

上传人:人****来 文档编号:4737753 上传时间:2024-10-11 格式:DOC 页数:57 大小:3.36MB
下载 相关 举报
成都市实验外国语学校九年级上册压轴题数学模拟试卷含详细答案.doc_第1页
第1页 / 共57页
成都市实验外国语学校九年级上册压轴题数学模拟试卷含详细答案.doc_第2页
第2页 / 共57页
成都市实验外国语学校九年级上册压轴题数学模拟试卷含详细答案.doc_第3页
第3页 / 共57页
成都市实验外国语学校九年级上册压轴题数学模拟试卷含详细答案.doc_第4页
第4页 / 共57页
成都市实验外国语学校九年级上册压轴题数学模拟试卷含详细答案.doc_第5页
第5页 / 共57页
点击查看更多>>
资源描述

1、成都市实验外国语学校九年级上册压轴题数学模拟试卷含详细答案一、压轴题1如图,在平面直角坐标系xOy中,已知直线AB经过点A(2,0),与y轴的正半轴交于点B,且OA2OB(1)求直线AB的函数表达式;(2)点C在直线AB上,且BCAB,点E是y轴上的动点,直线EC交x轴于点D,设点E的坐标为(0,m)(m2),求点D的坐标(用含m的代数式表示);(3)在(2)的条件下,若CE:CD1:2,点F是直线AB上的动点,在直线AC上方的平面内是否存在一点G,使以C,G,F,E为顶点的四边形是菱形?若存在,请求出点G的坐标;若不存在,请说明理由2已知抛物线与x轴交于点,点,与y轴交于点,顶点为点D(1)

2、求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且,求直线CE的解析式(3)若点P在抛物线上,点Q在x轴上,当以点D、C、P、Q为顶点的四边形是平行四边形时,求点P的坐标;(4)已知点,在抛物线对称轴上找一点F,使的值最小此时,在抛物线上是否存在一点K,使的值最小,若存在,求出点K的坐标;若不存在,请说明理由3如图,在平面直角坐标系中,抛物线与轴正半轴交于点,且点的坐标为,过点作垂直于轴的直线是该抛物线上的任意一点,其横坐标为,过点作于点;是直线上的一点,其纵坐标为,以,为边作矩形(1)求的值(2)当点与点重合时,求的值(3)当矩形是正方形,且抛物线的顶点在该正方形内部时,求的值(4)

3、当抛物线在矩形内的部分所对应的函数值随的增大而减小时,直接写出的取值范围4在平面直角坐标系中,抛物线yax2+bx3过点A(3,0),B(1,0),与y轴交于点C,顶点为点D(1)求抛物线的解析式;(2)点P为直线CD上的一个动点,连接BC;如图1,是否存在点P,使PBCBCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;如图2,点P在x轴上方,连接PA交抛物线于点N,PABBCO,点M在第三象限抛物线上,连接MN,当ANM45时,请直接写出点M的坐标5在平面直角坐标系中,函数和的图象关于y轴对称,它们与直线分别相交于点(1)如图,函数为,当时,的长为_;(2)函数为,当时,t

4、的值为_;(3)函数为,当时,求的面积;若,函数和的图象与x轴正半轴分别交于点,当时,设函数的最大值和函数的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围6如图1,在RtABC中,A90,ABAC,点D,E分别在边AB,AC上,ADAE,连接DC,点M,P,N分别为DE,DC,BC的中点(1)观察猜想:图1中,线段PM与PN的数量关系是 ,位置关系是 ;(2)探究证明:把ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断PMN的形状,并说明理由;(3)拓展延伸:把ADE绕点A在平面内自由旋转,若AD4,AB10,请直接写出PMN面积的最大值7如图1,与为等

5、腰直角三角形,与 重合,固定,将绕点顺时针旋转,当边与边重合时,旋转终止现不考虑旋转开始和结束时重合的情况,设(或它们的延长线)分别交(或它们的延长线)于点,如图2(1)证明:;(2)当为何值时,是等腰三角形?8在锐角ABC中,AB=AC,AD为BC边上的高,E为AC中点(1)如图1,过点C作CFAB于F点,连接EF若BAD=20,求AFE的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作CNAM于N点,射线EN,AB交于P点依题意将图2补全;小宇通过观察、实验,提出猜想:在点M运动的过程中,始终有APE=2MAD小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:想法

6、1:连接DE,要证APE=2MAD,只需证PED=2MAD想法2:设MAD=,DAC=,只需用,表示出PEC,通过角度计算得APE=2想法3:在NE上取点Q,使NAQ=2MAD,要证APE=2MAD,只需证NAQAPQ请你参考上面的想法,帮助小宇证明APE =2MAD(一种方法即可)9如图1,平面直角坐标系中,等腰的底边在轴上,顶点在的正半轴上,一动点从出发,以每秒1个单位的速度沿向左运动,到达的中点停止另一动点从点出发,以相同的速度沿向左运动,到达点停止已知点、同时出发,以为边作正方形,使正方形和在的同侧设运动的时间为秒()(1)当点落在边上时,求的值;(2)设正方形与重叠面积为,请问是存在

7、值,使得?若存在,求出值;若不存在,请说明理由;(3)如图2,取的中点,连结,当点、开始运动时,点从点出发,以每秒个单位的速度沿运动,到达点停止运动请问在点的整个运动过程中,点可能在正方形内(含边界)吗?如果可能,求出点在正方形内(含边界)的时长;若不可能,请说明理由10如图,抛物线经过点A(1,0),B(4,0)与轴交于点C(1)求抛物线的解析式;(2)如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由(3)如图,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使CQM为等腰三角形且BQM为直角三

8、角形?若存在,求M的坐标;若不存在,请说明理由11如图,在矩形ABCD中,AB6,BC8,点E,F分别在边BC,AB上,AFBE2,连结DE,DF,动点M在EF上从点E向终点F匀速运动,同时,动点N在射线CD上从点C沿CD方向匀速运动,当点M运动到EF的中点时,点N恰好与点D重合,点M到达终点时,M,N同时停止运动(1)求EF的长(2)设CNx,EMy,求y关于x的函数表达式,并写出自变量x的取值范围(3)连结MN,当MN与DEF的一边平行时,求CN的长12小聪与小明在一张矩形台球桌ABCD边打台球,该球桌长AB=4m,宽AD=2m,点O、E分别为AB、CD的中点,以AB、OE所在的直线建立平

9、面直角坐标系。(1)如图1,M为BC上一点;小明要将一球从点M击出射向边AB,经反弹落入D袋,请你画出AB上的反弹点F的位置;若将一球从点M(2,12)击出射向边AB上点F(0.5,0),问该球反弹后能否撞到位于(-0.5,0.8)位置的另一球?请说明理由(2)如图2,在球桌上放置两个挡板(厚度不计)挡板MQ的端点M在AD中点上且MQAD,MQ=2m,挡板EH的端点H在边BC上滑动,且挡板EH经过DC的中点E;小聪把球从B点击出,后经挡板EH反弹后落入D袋,当H是BC中点时,试证明:DN=BN;如图3,小明把球从B点击出,依次经挡板EH和挡板MQ反弹一次后落入D袋,已知EHC=75,请你直接写

10、出球的运动路径BN+NP+PD的长。13如图所示,在中,点从点出发沿方向以每秒2个单位长度的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长度的速度向点匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒,过点作于点,连接、.(1)求证:;(2)四边形能够成为菱形吗?若能,求出的值;若不能,请说明理由;(3)当_时,为直角三角形.14如图,抛物线ymx24mx+2m+1与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2x12(1)求抛物线的解析式;(2)E是抛物线上一点,EAB2OCA,求点E的坐标;(3)设抛物线的顶点为D,动点P从点B出发,沿

11、抛物线向上运动,连接PD,过点P做PQPD,交抛物线的对称轴于点Q,以QD为对角线作矩形PQMD,当点P运动至点(5,t)时,求线段DM扫过的图形面积15如图,在平面直角坐标系xOy中,过T外一点P引它的两条切线,切点分别为M,N,若,则称P为T的环绕点 (1)当O半径为1时,在中,O的环绕点是_;直线y=2x+b与x轴交于点A,y轴交于点B,若线段AB上存在O的环绕点,求b的取值范围;(2)T的半径为1,圆心为(0,t),以为圆心,为半径的所有圆构成图形H,若在图形H上存在T的环绕点,直接写出t的取值范围16在平面直角坐标系中,抛物线经过点A、B、C,已知A(-1,0),B(3,0),C(0

12、,-3).(1)求此抛物线的函数表达式;(2)若P为线段BC上一点,过点P作轴的平行线,交抛物线于点D,当BCD面积最大时,求点P的坐标;(3)若M(m,0)是轴上一个动点,请求出CM+MB的最小值以及此时点M的坐标.17定义:如果一个三角形中有两个内角,满足+290,那我们称这个三角形为“近直角三角形”(1)若ABC是“近直角三角形”,B90,C50,则A 度;(2)如图1,在RtABC中,BAC90,AB3,AC4若BD是ABC的平分线,求证:BDC是“近直角三角形”;在边AC上是否存在点E(异于点D),使得BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由(3)如图

13、2,在RtABC中,BAC90,点D为AC边上一点,以BD为直径的圆交BC于点E,连结AE交BD于点F,若BCD为“近直角三角形”,且AB5,AF3,求tanC的值18如图,在平面直角坐标系中,抛物线与轴交于点和点,与轴交于点,且点在第四象限且在抛物线上(1)如(图1),当四边形面积最大时,在线段上找一点,使得最小,并求出此时点的坐标及的最小值;(2)如(图2),将沿轴向右平移2单位长度得到,再将绕点逆时针旋转度得到,且使经过、的直线与直线平行(其中),直线与抛物线交于、两点,点在抛物线上在线段上是否存在点,使以点、为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由1

14、9新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”例如,如图,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB的周长与面积相等,则点P是“和谐点”(1)点M(1,2)_“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程的解,求a,b的值(2)如图,点E 是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P(2,3),求点Q的坐标; (3)如图,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段若M是直线上的一动点,连接PM、OM,请

15、画出图形并写出与,的数量关系20对于C与C上的一点A,若平面内的点P满足:射线AP与C交于点Q(点Q可以与点P重合),且,则点P称为点A关于C的“生长点”已知点O为坐标原点,O的半径为1,点A(-1,0)(1)若点P是点A关于O的“生长点”,且点P在x轴上,请写出一个符合条件的点P的坐标_;(2)若点B是点A关于O的“生长点”,且满足,求点B的纵坐标t的取值范围;(3)直线与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于O的“生长点”,直接写出b的取值范围是_【参考答案】*试卷处理标记,请不要删除一、压轴题1(1)yx+1;(2);(3)(2,4)或(2,2)或【解析】【分析】(1)利

16、用待定系数法即可解决问题;(2)求出点C坐标,利用待定系数法求出直线DE的解析式即可解决问题;(3)求出点E坐标,分两种情形分别讨论求解即可;【详解】(1)A(2,0),OA2OB,OA2,OB1,B(0,1),设直线AB的解析式为ykx+b,则有解得直线AB的解析式为yx+1(2)BCAB,A(2,0),B(0,1),C(2,2),设直线DE的解析式为ykx+b,则有解得直线DE的解析式为令y0,得到(3)如图1中,作CFOD于FCE:CD1:2,CFOE,CF2,OE3m3E(0,3),D(6,0),当EC为菱形ECFG的边时,F(4,3),G(2,4)或F(0,1),G(2,2)当EC为

17、菱形EFCG的对角线时,FG垂直平分线段EC,易知直线DE的解析式为,直线GF的解析式为由,解得F,设G(a,b),则有G【点睛】本题考查一次函数综合题、平行线分线段成比例定理、菱形的判定和性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题2(1);(2);(3)点P的坐标为;(4)存在,点K的坐标为【解析】【分析】(1)由于点A、B为抛物线与x轴的交点,可设两点式求解;也可将A、B、C的坐标直接代入解析式中利用待定系数法求解即可;(2)根据两个三角形的高相等,则由面积比得出,求出AE,根据点A坐标可解得点E坐标,进而求得直线CE的解析式

18、;(3)分两种情况讨论当四边形为平行四边形时;当四边形为平行四边形时,根据平行四边形的性质和点的坐标位置关系得出纵坐标的关系式,分别代入坐标数值,解方程即可解答;(4)根据抛物线的对称性,AF=BF,则HF+AF=HF+BF,当H、F、B共线时,HF+AF值最小,求出此时点F的坐标,设,由勾股定理和抛物线方程得,过点K作直线SK,使轴,且点的纵坐标为,则点S的坐标为,此时,,KF+KG=KS+KG,当S、K、G共线且平行y轴时,KF+KG值最小,由点G坐标解得,代入抛物线方程中解得,即为所求K的坐标【详解】解:(1)方法1:设抛物线的解析式为将点代入解析式中,则有抛物线的解析式为方法二:经过三

19、点抛物线的解析式为,将代入解析式中,则有,解得:,抛物线的解析式为(2),的坐标为又点的坐标为直线的解析式为 (3)顶点D的坐标为当四边形为平行四边形时,由DQCP,DQ=CP得:,即令,则点P的坐标为 当四边形为平行四边形时,由CQDP,CQ=DP得:,即令,则点P的坐标为综合得:点P的坐标为(4)点A或点B关于对称轴对称连接与直线交点即为F点点H的坐标为,点的坐标为,直线BH的解析式为:令,则当点F的坐标为时,的值最小11分设抛物线上存在一点,使得的值最小则由勾股定理可得:又点K在抛物线上,代入上式中,如图,过点K作直线SK,使轴,且点的纵坐标为点S的坐标为则(两处绝对值化简或者不化简者正

20、确)当且仅当三点在一条直线上,且该直线干行于y轴,的值最小又点G的坐标为,将其代入抛物线解析式中可得:当点K的坐标为时,最小【点睛】本题主要考查了二次函数与几何图形的综合,涉及待定系数法、平行四边形的性质、三角形面积、求线段和的最小值(即将军饮马模型)等知识,解答的关键是认真审题,找出相关条件,运用待定系数法、数形结合法等解题方法确定解题思路,对相关信息进行推理、探究、发现和计算3(1);(2);(3);(4)或【解析】【分析】(1)将A点坐标代入函数解析式即可求得b的值;(2)分别表示出P、Q、M的坐标,根据Q、M的横坐标相同,它们重合时纵坐标也相同,列出方程求解即可;(3)分别表示出PQ和

21、MQ的长度,根据矩形是正方形时,即可求得m的值,再根据顶点在正方形内部,排除不符合条件的m的值;(4)分,四种情况讨论,结合图形分析即可【详解】解:(1)将点代入得,解得b=1,;(2)由(1)可得函数的解析式为,,于点,,是直线上的一点,其纵坐标为,若点与点重合,则,解得;(3)由(2)可得,当矩形是正方形时,即,即或,解得,解得,又,抛物线的顶点为(1,2),抛物线的顶点在该正方形内部,P点在抛物线对称轴左侧,即,且M点的纵坐标大于抛物线顶点的纵坐标,即,解得,故m的值为;(4)如下图当时,若抛物线在矩形内的部分所对应的函数值随的增大而减小,则M点的纵坐标应该小于P点纵坐标,且P点应该在x

22、轴上侧,即且,解得,解得,如下图当时,若抛物线在矩形内的部分所对应的函数值随的增大而减小,则M点的纵坐标应该小于P点纵坐标,即,解得,;当时,P点和M点都在直线x=3上不构成矩形,不符合题意;如下图当时,若抛物线在矩形内的部分所对应的函数值随的增大而减小,则M点的纵坐标应该大于P点纵坐标,即,解得或,故,综上所述或【点睛】本题考查二次函数综合,正方形的性质定理,求二次函数解析式能分别表示出M、P、Q的坐标并结合图形分析是解决此题的关键,注意分类讨论4(1)yx2+2x3;(2)存在,点P的坐标为(1,2)或(5,8);点M(,)【解析】【分析】(1)yax2+bx3a(x+3)(x1),即可求

23、解;(2)分点P(P)在点C的右侧、点P在点C的左侧两种情况,分别求解即可;证明AGRRHM(AAS),则点M(m+n,nm3),利用点M在抛物线上和ARNR,列出等式即可求解【详解】解:(1)yax2+bx3a(x+3)(x1),解得:a1,故抛物线的表达式为:yx2+2x3;(2)由抛物线的表达式知,点C、D的坐标分别为(0,3)、(1,4),由点C、D的坐标知,直线CD的表达式为:yx3;tanBCO,则cosBCO;当点P(P)在点C的右侧时,PABBCO,故PBy轴,则点P(1,2);当点P在点C的左侧时,设直线PB交y轴于点H,过点H作HNBC于点N,PBCBCO,BCH为等腰三角

24、形,则BC2CHcosBCO2CH,解得:CH,则OH3CH,故点H(0,),由点B、H的坐标得,直线BH的表达式为:yx,联立并解得:,故点P的坐标为(1,2)或(5,8);PABBCO,而tanBCO,故设直线AP的表达式为:y,将点A的坐标代入上式并解得:s1,故直线AP的表达式为:yx+1,联立并解得:,故点N(,);设AMN的外接圆为圆R,当ANM45时,则ARM90,设圆心R的坐标为(m,n),GRA+MRH90,MRH+RMH90,RMHGAR,ARMR,AGRRHM90,AGRRHM(AAS),AGm+3RH,RGnMH,点M(m+n,nm3),将点M的坐标代入抛物线表达式得:

25、nm3(m+n)2+2(m+n)3,由题意得:ARNR,即(m+3)2(m)2+()2,联立并解得:,故点M(,)【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形全等、圆的基本知识等,其中(2),要注意分类求解,避免遗漏5(1)4;(2)1;(3);【解析】【分析】(1)由题意,先求出的解析式,再求出P、Q两点的坐标,即可求出PQ的长度;(2)由题意,先求出的解析式,结合PQ的长度,即可求出t的值;(3)根据题意,先求出的解析式,然后求出点P和点Q的纵坐标,得到PQ的长度,利用三角形的面积公式即可求出面积;根据题意,先求出函数和的解析式,然后求出两个函数的对称轴,利用二次函数

26、的对称性和增减性进行分类讨论:当时,以及当时,分别求出h与c的关系式即可【详解】解:(1)函数为,函数和的图象关于y轴对称,函数为,当时,有;点P为(2,3),点Q为(2,),的长为;故答案为:4;(2)函数为,函数和的图象关于y轴对称,函数为;,点P在第一象限,点Q在第四象限,设点P为(t,),点Q为(t,),解得:;故答案为:1;(3)函数为,函数和的图象关于y轴对称,函数为:,即;,把代入函数,则;把代入函数,则;,;由可知,函数为,函数为,函数和的图象与x轴正半轴分别交于点,解得: ,函数可化为:,函数可化为:;函数的对称轴为:,函数的对称轴为:,则,则函数,函数均是开口向下;函数在上

27、,y随x增大而增大,在上是y随x增大而减小;函数在上,y随x增大而减小;,当时,则函数在时取到最大值;函数在时取到最小值,则,即();当时,则函数在时取到最大值;函数在时取到最小值,则,即();综合上述,h关于c的函数解析式为:【点睛】本题考查了二次函数的综合问题,考查了二次函数的对称性、增减性,也考查了一次函数的图像和性质,待定系数法求函数的解析式,以及两点之间的距离,求三角形的面积等知识,解题的关键是熟练掌握二次函数和一次函数的性质进行解题,注意运用数形结合、分类讨论的思想进行分析,从而进行解题6(1)PMPN,PMPN;(2)PMN是等腰直角三角形理由见解析;(3)SPMN最大【解析】【

28、分析】(1)由已知易得,利用三角形的中位线得出,即可得出数量关系,再利用三角形的中位线得出得出,最后用互余即可得出位置关系;(2)先判断出,得出,同(1)的方法得出,即可得出,同(1)的方法由,即可得出结论;(3)方法1:先判断出最大时,的面积最大,进而求出,即可得出最大,最后用面积公式即可得出结论方法2:先判断出最大时,的面积最大,而最大是,即可得出结论【详解】解:(1)点,是,的中点,点,是,的中点,故答案为:,;(2)是等腰直角三角形由旋转知,利用三角形的中位线得,是等腰三角形,同(1)的方法得,同(1)的方法得,是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,是等腰直角三角形

29、,最大时,的面积最大,且在顶点上面,最大,连接,在中,在中,方法2:由(2)知,是等腰直角三角形,最大时,面积最大,点在的延长线上,【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出,解(2)的关键是判断出,解(3)的关键是判断出最大时,的面积最大7(1)证明见解析(2)当或或时,AGH是等腰三角形【解析】试题分析:(1)根据ABC与EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理:两角对应相等的两个三角形相似,即可证出相似;(2)以GAH45这个角为等腰三角形的底

30、角还是顶角进行分类讨论,从而得到本题答案.试题解析:(1)ABC与EFD为等腰直角三角形,AC与DE重合,B=EDF=45在AGC和HAB中ACG=B=45,HAB=BAG+GAH =BAG+45=CGAAGCHAB(2)当GAH45是等腰三角形的底角时,如图可知:;当GAH45是等腰三角形的顶角时,如图:在HGA和AGC中,AGHCGA,GAHC45,HGAAGC,AGAH,如图,G与B重合时,符合要求,此时CG=BC=当或或时,AGH是等腰三角形点晴:本题主要考查学生对相似三角形的判定与性质,等腰三角形(等腰直角三角形)的性质,旋转的性质等知识点的理解和掌握,综合性较强,在第(2)中,要利

31、用在旋转的过程中,AGH中始终不变的角GAH45为切入点,以这个角是等腰三角形的底角还是顶角为分类点进行分类讨论,要注意当GAH45为底角时有两种情况,不要漏掉其中的任何一种,要做到不重不漏,才能做好分类讨论这一问题.8(1)证明见解析;(2) 补图见解析;证明见解析.【解析】【分析】【详解】(1)证明:AB=AC,AD为BC边上的高,BAD=20,BAC=2BAD=40CFAB, AFC=90E为AC中点,EF=EA=AFE=BAC=40(2) 当点P在边AB上是,补全图形如图当点P在AB的延长线上是,补全图形如图、当点P在边AB上时,证明:想法1:如图3,连接DE.AB=AC,AD为BC边

32、上的高,D为BC中点E为AC中点,EDAB,PED=APE.ADC=90,E为AC中点,同理可证AE=NE=CE=DE.A,N,D,C在以点E为圆心,AC为直径的圆上, PED=2MAD.APE=2MAD.想法2:设MAD=,DAC=,CNAM,ANC=90.E为AC中点,AE=NE=AC.ANE=NAC=MAD+DAC=+.NEC=ANE+NAC=2+2.AB=AC,ADBC,BAC=2DAC=2.APE=PECBAC=2.APE=2MAD.、当点P在AB的延长线上时证明:想法1:连接DEAB=AC,AD为BC边上的高,D为BC中点E为AC中点,EDAB,1=APE ADC=90,E为AC中

33、点,同理可证AE=NE=CE=DEA,N,D,C在以点E为圆心,AC为直径的圆上 1=2MAD APE=2MAD想法2:设MAD=,DAC=,CNAM,ANC=90.E为AC中点,AE=NE=AC.ANE=NAC=MAD+DAC=+.NEC=ANE+NAC=2+2.AB=AC,ADBC,BAC=2DAC=2.APE=PECBAC=2.APE=2MAD.想法3:在NE上取点Q,使NAQ=2MAD,即3=4.即E为AC的中点,9(1)t=1;(2)存在,理由见解析;(3)可能,或或理由见解析【解析】【分析】(1)用待定系数法求出直线AC的解析式,根据题意用t表示出点H的坐标,代入求解即可;(2)根

34、据已知,当点F运动到点O停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t,使重叠面积为,故t4,用待定系数法求出直线AB的解析式,求出点H落在BC边上时的t值,求出此时重叠面积为,进一步求出重叠面积关于t的表达式,代入解t的方程即可解得t值;(3)由已知求得点D(2,1),AC=,OD=OC=OA=,结合图形分情况讨论即可得出符合条件的时长【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC的函数解析式为y=kx+b,将点A、C坐标代入,得:,解得:,直线AC的函数解析式为,当点落在边上时,点E(3-t,0),点H(3-t,1),将点H代入,得:,解得:t=

35、1;(2)存在,使得根据已知,当点F运动到点O停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t,使重叠面积为,故t4,设直线AB的函数解析式为y=mx+n,将点A、B坐标代入,得:,解得:,直线AC的函数解析式为,当t4时,点E(3-t,0)点H(3-t,t-3),G(0,t-3),当点H落在AB边上时,将点H代入,得:,解得:;此时重叠的面积为,t5,如图1,设GH交AB于S,EH交AB于T,将y=t-3代入得:,解得:x=2t-10,点S(2t-10,t-3),将x=3-t代入得:,点T,AG=5-t,SG=10-2t,BE=7-t,ET=,,所以重叠面积S=4-=,由=得:,

36、5(舍去),; (3)可能,t1或t=4点D为AC的中点,且OA=2,OC=4,点D(2,1),AC=,OD=OC=OA=,易知M点在水平方向以每秒是4个单位的速度运动;当0t时,M在线段OD上,H未到达D点,所以M与正方形不相遇;当t1时, +(1+4)=秒, 时M与正方形相遇,经过1(1+4)=秒后,M点不在正方行内部,则;当t=1时,由(1)知,点F运动到原E点处,M点到达C处;当1t2时,当t=1+1(4-1)=秒时,点M追上G点,经过1(4-1)=秒,点都在正方形内(含边界),当t=2时,点M运动返回到点O处停止运动,当 t=3时,点E运动返回到点O处, 当 t=4时,点F运动返回到

37、点O处,当时,点都在正方形内(含边界),综上,当或或时,点可能在正方形内(含边界)【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算10(1);(2)9;(3)存在点M的坐标为()或()使CQM为等腰三角形且BQM为直角三角形【解析】【分析】(1)根据抛物线经过A、B两点,带入解析式,即可求得a、b的值.(2)根据PA=PB,要求四边形PAOC的周长最小,只要P、B、C三点在同一直线上,因此很容

38、易计算出最小周长.(3)首先根据BQM为直角三角形,便可分为两种情况QMBC和QMBO,再结合QBMCBO,根据相似比例便可求解.【详解】解:(1)将点A(1,0),B(4,0)代入抛物线中,得: 解得: 所以抛物线的解析式为.(2)由(1)可知,抛物线的对称轴为直线.连接BC,交抛物线的对称轴为点P,此时四边形PAOC的周长最小,最小值为OA+OC+BC=1+3+5=9. (3) 当QMBC时,易证QBMCBO 所以 , 又因为CQM为等腰三角形 ,所以QM=CM.设CM=x, 则BM=5- x 所以 所以.所以QM=CM=,BM=5- x=,所以BM:CM=4:3. 过点M作NMOB于N,

39、则MN/OC, 所以 ,即 ,所以, 所以点M的坐标为() 当QMBO时, 则MQ/OC, 所以 , 即 设QM=3t, 则BQ=4t, 又因为CQM为等腰三角形 ,所以QM=CM=3t,BM=5-3t 又因为QM2+QB2=BM2, 所以(3t )2+(4t )2=(5-3t )2, 解得MQ=3t=, 所以点M的坐标为().综上所述,存在点M的坐标为()或()使CQM为等腰三角形且BQM为直角三角形【点睛】本题是一道二次函数的综合型题目,难度系数较高,关键在于根据图形化简问题,这道题涉及到一种分类讨论的思想,这是这道题的难点所在,分类讨论思想的关键在于根据直角三角形的直角进行分类的.11(

40、1)EF=2;(2)yx(0x12);(3)满足条件的CN的值为或12【解析】【分析】(1)在RtBEF中,利用勾股定理即可解决问题(2)根据速度比相等构建关系式解决问题即可(3)分两种情形如图31中,当MNDF,延长FE交DC的延长线于H如图32中,当MNDE,分别利用平行线分线段成比例定理构建方程解决问题即可【详解】解:(1)四边形ABCD是矩形,B90,ABCD6,ADBC8,AFBE2,BF624,EF2(2)由题意:,yx(0x12)(3)如图31中,延长FE交DC的延长线于HEFBEHC,EH6,CH12,当MNDF时,yx,解得x,如图32中,当MNDE时, ,yx,解得x12,

41、综上所述,满足条件的CN的值为或12【点睛】本题属于四边形综合题,考查了矩形的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型12(1)答案见解析 答案见解析 (2)证明见解析 【解析】【分析】(1)根据反射的性质画出图形,可确定出点F的位置;过点H作HGAB于点G,利用点H的坐标,可知HG的长,利用矩形的性质结合已知可求出点B,C的坐标,求出BM,BF的长,再利用锐角三角函数的定义,去证明tanMFB=tanHFG,即可证得MFB=HFG,即可作出判断;(2)连接BD,过点N作NTEH于点N,交AB于点T,利用三角形中位线定理可证得EHBD,再证明MQAB,从而可证得DNQ=BNQ,DQN=NQB,利用ASA证明DNQBNQ,然后利用全等三角形的性质,可证得结论;作点B关于EH对称点B,过点B作BGBC交BC的延长线于点G,连接BH,BN,连接AP,过点B作BLx轴于点L,利用轴对称的性质,可证得AP=DP,NB=NB,BHN=NHB根据反射的性质,易证AP

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服