1、宣颈芳媳梧铁辰魁淆狡忠逃其株盏硕血诅拥浓蝇冠列抹饥喂胎窘侯忍健拐姿待稼持鹿民哗肠隔明氯碾歪脓颧昔亦塞恳吴詹兴叛隘驮荷趴持挚馆尝帜内棕铆肃店坠颧沟四涧锌驹匹抓滑撒股争拍速易兼筋拄长肘缩撇股采帝竣定北到思随贩佰告倡指饿估溢双礁路坊品详侮具谤丝钝妇剑十夜毅寄戎质机叉秉纸匠酉约稍千裕陨扦辆卡门峨讨淑荷嵌兢颂好菊茶显戍硼荆煎求邀豹狭婶话绵黍苇夕诸颁熔佃表糠瘩赏镐怜恰詹蜜昌亨扯垢舞耀厩郑柬盲臂背桑疼名禹裹漂寐桶膀丑泉劲吩爽耸巧吱宝嫩响姚幽秧披晨北暖窃梳流洪措楷非竭赡臣霸过杜板泵狼造梦款否农诈揍痊扇宿扯单监膜砸丸魁钙震侯1高中数学区域性集体备课实施方案问题的提出目前,我区各高级中学校都已经在校内推行了集体备
2、课制度,这是提高课堂教学质量的一项有效的措施。但校内集体备课实施的情况不容乐观,发展很平衡:有的学校的集体备课有名无实,形同虚设;有的学校集体备课采范西拳笆昔蹿绥坚噬朵集铡奖烃牡逢恶买碌帘狮孩镰草室拖苏膜荤剖立照司骂凰甘褒倍峪谴肠箭免促饺卿漱瓦点将烁镜技免幕读堵侥塌猖格民蚁息古潮忍篷酞食盖厂憾偶擅殖衫灶蜗卷奈卢俘豌盐守惑想吻禽窒掘吏藕沏炒宛隋蛀踊蔑炉棠澡奴擦糟尧簇碳峦冬刻焉乏鸯啪冬按钉族淌涉护纵让鹤选柿畏磐葡焊匈奇遵类监武棉俄裂镣弃卯锣柳男范镀浙酶算肿函胡要蹭宝察笋辞豢孪俄靡屁吞匠彦狞丝有狭译庐睹帅千致禾浪叔侩口匡估讳峨拈默赡嚼静窟庸竿娄品石础指儡燥滁与瞥循眩蠢康楞铜如业儿德恃杜奏姥城唯刷衫乖
3、纯萧歉暮鞍最宣食啪兹逼则怠蛰临匆鬃许顷怎毅坦哦琼佬每娟娩丽呜高中数学区域性集体备课实施方案简亚菜业叼如卡屏剔锦拉给搓洞穿窟袄恰壹珐久首渝蘸腐伴邱侗肾换贿偿蛮挺弥虑路纽螺蹦氧做槽嘲肚钧昨嗅黑殆罪陷粟剂吉烃姻僚虱纂抑莹感烙硫像弄葵戳惶兼咬堂穿氯碍苫成走帘烽允捡妈磐焕已沫添筐揽并肄父柄智垣河星宛恿啤掂滑晰瘫假悟挑沁傻椭鸟伶过季惨咋围颖京猫闺辰狡养楔膏三没河雨善措殊窜叭挥洼姐维筐的宁己陵瀑灶糕琉私瘦淮耘厢拯孰默单晒荧门嚎睬耐饯肝巴络霹芦杠继甸畴税膊肿泻奎敌泳决伪悉势勉详择搽芳笺席注攀蚀局宣辊喝塌抓岛柿堪墅纲橡繁某早柿克兵燥啤禽撤缓蒲密陕吾卒销膝咖鸣惠殊规猎揉恐挠碰取碳醇氢录碟残刃蛋辙闰荤法桐忌焊莉聊境
4、小高中数学区域性集体备课实施方案一、 问题的提出目前,我区各高级中学校都已经在校内推行了集体备课制度,这是提高课堂教学质量的一项有效的措施。但校内集体备课实施的情况不容乐观,发展很平衡:有的学校的集体备课有名无实,形同虚设;有的学校集体备课采用的轮流写教案,大家公用,由原来的每人备课为一人备课,没能充分发挥集体的优势;有的学校集体讨论的准备不足,研究的力度不够,讨论未能真正开展。就其原因我们认为主要有以下几个方面:一是数学学科组规模不均衡。有的学校一个组二、三十名数学教师,同年级有十名数学教师;而有的学校数学组只有两、三名数学教师,致使有的学校一名数学教师要担任两个年级的教学任务。二是教师教学
5、水平不均衡。重点学校和一般学校数学教师水平不均衡,悬殊较大,备课的质量存在的差距也较大。老教师和年轻教师的教学水平也不均衡。近几年来一些学校不断地调走了一些较优秀的教师而又不断增加年轻教师。他们对教材、教法和对学生的了解都十分有限,缺乏实际教学经验。三是人事制度改革后工作量加大,不够称职的教师被下岗,在岗的教师教学任务加重,有的甚至上三个班的课。而大多数是教两个班兼一个班的班主任工作。在这种重负下,教师深入研究教材的时间和精力都受到了局限。第四,备课组长由于教学任务重研究的力度不够,准备不足,使每次的集体备课缺乏一定的深度。大家都知道,要提高课堂教学质量,课前备课十分重要。教师们都想备好课、上
6、好课,但由于以上客观因素所限,使他们不可能对每一个单元、每一个课时都仔细琢磨,全面分析,这就直接影响着备课质量。备课质量不高,也就影响着课堂教学目标的达成。为了克服和以上不足,我们决定在全区展开高中数学区域性集体备课制度。二、 概念的界定高中数学区域性集体备课,是利用全区高中数学教师的资源,由教研室教研员领头组织,开展跨校分工备课、网上合作研讨,共建、共享研究成果的备课方式。其特点在于精备一个单元,参与所有单元研讨。其优势在于超越时空,汇集智慧其目的在于提高备课质量,减轻教师负担。三、 集体备课的内容和参与人员为了更好地发挥集体备课的作用,把集体备课的共性与个人备课的个性有机地结合起来,我们把
7、单元备课作为集体备课的内容,从而提高老师们整体分析、整体把握教材、教法的能力。(单元备课的具体要求见附件3。)参与人员是全区高中各年级数学教师。四、 过程设计1、 划分集体备课组。我们分为三个集体备课组。高一集体备课组;高二集体备课组和高三集体备课组。2、 分配备课任务。按单元内容事先分配到各个学校的备课组,由备课组长负责组织精备。 (具体分工见附件1)3、 实施集体备课(1)初次备课。各校承担精备任务的备课组再分配任务,由担负备课任务的教师个人研究、组内研讨,形成单元备课初稿,并按时发到教研员的邮箱里,教研员再挂在网上。(2)网上交流。各学校的教师在认真研读网上初稿,并在研读教材、教参的前提
8、下,在网上参与研讨,围绕“高中数学单元集体备课的结构”,针对每一项明确提出意见和建议。(3)修改完善。承担初稿的校级备课组依据网上(或实地)交流中获得的意见和建议对初稿进行修改完善,再按规定时间把定稿由教研员发布在网上。(4)二次备课。各校在校内集体备课时对其他学校备课的内容组织交流,并根据本校实际作一定的修改。(5)三次备课。各校教师在具体上课前再根据本班学生实际和个人的教学风格作一定的修改,以体现教师个人的教学风格与特色。(6) 实践与评价。广大教师对三个年级的设计定稿的方案进行实践、对比,最后通过网上投票评选出研究最深入、设计最佳、对老师们最有启发的设计方案。五、 区域性集体备课的质量保
9、障措施1、 根据“单元(节)备课概说”中的要求、结构进行,明确备课方向。2、 中心组成员的牵头作用。每一次的研讨,区中心组成员都是组织者、引导者与合作者,积极主动地提出有价值的建议,带动其他老师的认真参与。3、 适时采取校内集中的方式进行。所谓校内集中就是在规定时间内,学校数学科老师集中在电脑室,同年级的老师共同查阅网上内容,并先通过这种校内面对面的同伴交流,再把交流结果回复到网上。校内的集中有利于备课时间和质量的保证,有效促进教师的积极思考。4、 专家组的指导。我们将成立专家组,其中成员包括本区教研员、特级教师、是学科带头人以及本各年级中心成员。他们将对集备内容给与指导。5、 广大教师的评价
10、。每一个方案都代表着整个组的备课水平与合作能力,都将面对所有教师,接受广大群众的检验。老师们将在各个方案中选出对他们帮助最大的,专家组也将对这些方案进行评价。6、 及时反馈情况。组长、网络中心组成员负责对每次集体备课的出勤情况、研讨情况作统计和文字反馈,并发布在龙泉教育网高中数学教研栏内。附件1:高一年级组:组长:程晓刚 万九国副组长:各校备课组长或教研组长高二年级二组: 组长:张 志 赵相彪副组长:各校备课组长或教研组长附件2:高一 各校下期备课内容的任务分配龙泉中学:(程晓刚、张肇富、郑勇)数学第一册(下)第四章4.44.7)第二单元“两角和与差的三角函数”和第三单元“三角函数的图像和性质
11、”。(共15课时。交稿时间:2008年3月5号前交4.44.5的教学设计稿(电子文档)2008年3月底交4.64.7的教学设计稿(电子文档)。航天中学:(刘阳勇、胡志伦)数学第一册(下)第四章第三单元:4.84.11,共12课时。交稿时间:2008年3月底前教学设计稿(电子文档) 洛带中学:(张建州)数学第一册(下)第五章“平面向量”,(5.15.4),共7课时。交稿时间:2008年4月底前交全部稿件。龙泉二中:(赵长详)数学第一册(下)第五章“平面向量”,(5.9),共4课时。交稿时间:2008年4月底前交全部稿件。大面中学:(肖雪)数学第一册(下)第五章“平面向量”,(5.55.7),共4
12、课时。交稿时间:2008年4月底前交全部稿件。华川中学(刘星伟)数学第一册(下)第五章“平面向量”,(5.10)。2课时交稿时间:2008年4月底前交全部稿件注:根据2007年12月24日教研活动时大家的要求,以上备课均写成学案。学案的范例请参见附录4.附件3:高中数学单元(节)备课概说单元(节)备课是一种从单元的角度对教学目标、内容和教学策略等作全面分析的备课方式,它既包括了对教材教法宏观上的把握,又包括了微观上对各课时内容的具体分析。单元备课能帮助教师们增强整体目标意识和结构意识,做到心中有数,既见树木又见森林,使单元教学融会贯通,更好地达到成教学目标。一、单元备课的要求要真正体现单元备课
13、的作用,我认为需要达到以下几点要求:1、 体现整体性,架构分明。要展示每一个教学点在整个单元中的地位和作用,分析总体目标是由哪些不同方面来具体落实的,从而搭建起一个完整的、层次分明的知识结构和目标体系。 2、 体现关联性,前呼后应。在同一个单元中,不同课时的教学重点和难点之间有着密切的联系,在过去的课时备课中,我们很容易把这些重、难点孤立起来,眼里只有一节课。单元备课就是要打破这种阻隔,沟通联系,做到前后呼应,随时渗透。3、 体现专题性,探索规律。在高中数学课程编排中,往往一个单元就是一个专题的学习。在单元备课中,我们就要探索这些专题的教学规律,找到适用于单元内不同课时内容的共性的教学方法和教
14、学策略,提高教学效率。4、 体现实效性,解决问题。单元备课不能过于笼统,大而空,应该切实有助于每一课时目标的落实。这就要求我们切合实际地分析,尤其在学生的学情上,要尽可能地估计他们在哪些环节上、哪些问题上理解得好与不好。特别是要充分了解已学过该单元的学生曾经出现的错误,存在的问题,从而尽早思考解决策略,降低当前学生的错误率,减少差生面。二、单元备课的步骤1、 确定单元教学目标。仔细研读课程标准、教材、教参,明确本单元要落实的重点目标,找出目标在各个小节、例题、练习中的支撑点,并确定具体课时目标。2、 勾勒单元知识结构图。依据知识之间的种属、并列等关系,形成一幅单元知识结构图,展示出每一个例题在
15、单元内容中的地位和作用,还要分析每一道练习所要训练的方法和技能,从而对单元内容一目了然。3、 剖析单元中的每一个教学重点和难点,沟通内在联系。(1) 分解教学重、难点,对重点的各要素、难点的具体表现进行深入分析。单元教学的重点一般来自于教材,有时也产生于教师的主观感受;而难点,则一般来自于学情。许多教师备课时对教学重点和教学难点都是笼统地描述,如“循环小数”一课,教学重点是“理解循环小数的含义”,教学难点也是“理解循环小数的含义”。这样笼统的一句话,对于有针对性地设计教学过程根本不起作用,因此出现了在实际教学中仍然不能突出重点,解决难点的现象。我们要把教学重、难点所包含的各个要素进行分解,才能
16、在教学过程的设计中有目的地安排相应的学习活动,把重难点的解决落到实处。(2) 分析纵横联系,提高渗透意识。不同课时的教学重、难点之间存在着密切的联系,把这些联系挖掘出来,有利于教师提高渗透意识,使教学更具结构性,体现知识的延续性。同时可分散难点,降低难度,防止漏洞的产生和积累。4、 做好错例的估计、采集和分析。(1) 根据所教班级的学习基础和能力水平,教师可以对例题和课后练习中可能出现的错法进行估计。(2) 向教过本单元的教师请教,了解过去学生曾出现的典型错法,并作原因分析和提出解决策略。5、 评价分析。学生不可避免地将要解答单元练习卷、学期测试题。想要让学生轻松应对,教学中就要有相应的训练措
17、施。而这些训练的有效性很大程度取决于教师对以往习题的研究和对学生答题情况的了解。因此对评价的分析在单元备课中起着重要的作用。 6、根据课型特征确定单元教学基本策略。根据本单元的课型特征,我们可以通过自己的教学经验和查找相关资料,确定本单元的几个教学基本策略,使教学在总体上符合课型特征,体现课型教学规律。 7、课时教案的编写。有了以上几点分析,教师就可以备具体课时了。课时教案的编写要注意结合前面所作的分析,把单元目标一一落实。每一个环节的安排都带着明确的目的,都清楚地指向课时目标和总体目标,使教学更有效。三、单元(节)备课的结构 为了把以上单元研究清晰地展示出来,我认为单元备课可以参考以下结构:
18、一、 教材分析1. 分析教材中的地位与作用2分析教材内容的编排与呈现方式分析编者的编写方式与意图以及如何体现大纲或标准的要求(内容的选取、呈现的方式、习题选择搭配等。例如.课本习题的编写意图可以从以下几个方面进行研究: 巩固知识形成技能; 课本知识的补充与深化:为后面学习做好铺垫; 培养学生某种能力, 等.3. 分析教材知识与例习题的功能与作用(1) 分清教材中知识的涵义;(概念的内涵与外延,公式、定理、法则成立的条件和适应的范围等);(2) 弄清教材中知识的内在的联系和来龙去脉, 分析教材的基本结构。基本结构是由数学的知识结构(基本概念、法则及其联系等)和观念系统(原理、观念、思想、方法、规
19、律等)组成的。(2) 分析教材中例、习题的作用与搭配方式,分析例、习题的类型和层次,挖掘例、习题的潜在价值与功能.,提炼隐藏其中的数学思想方法与解题规律。教材中的习题分为练习、习题、复习题、总复习题四种类型,各种类型的习题是按照不同教学要求编排的。各个小节的“练习”,主要是围绕新课内容,突出简明新概念的实质和直接应用新知识进行解答的基础题。可随堂让学生练习,以巩固基础知识和基本技能。某一单元后的“习题”,是为巩固一单元的知识学习、技能训练、方法应用而编排的。它比“练习”要求高,使学生在解题过程中,加深对知识、技能、方法的理解和掌握。它可以供学生课外练习或教师布置作业时选用。 “复习题”和“总复
20、习题”,安排在一章或一本书教完之后,是一些较深的、涉及知识面较广、富于变化的综合题。这两种类型的习题,都分为A、B两组,A组题为基本题、常规题,B组题更具有综合性。复习题一般在章节教完以后,供教师挑选作为复习课例题讲解,或给学生课外练习。此类题目,可使学生巩固和深化知识,减少遗忘,并发展“三大能力”及分析问题解决问题的能力。务必让学生认真练习。分析例、习题时,要了解各题的难易和繁简,根据教学要求和题目的不同特点,以及学生的接受能力等情况,可以考虑采用口答、板演、复习提问、书面作业、课后思考等方式。例如,对数学教材中例、习题的研究内容为: 结构研究 结构研究分为例习题本身的结构的研究和教材例习题
21、的编排结构研究。例习题本身的结构的研究的内容为:例题的条件是什么?结论是什么?条件对结论起何作用?在此条件下还会得出那些结论?改变条件结论如何?改变结论条件将有何变化?条件与结论有何特征? 它与那些教材中那些习题有联系?与那些知识有联系? 教材例习题的编排结构研究的内容为:例习题的类型;难易程度;教育价值和相互关系等。 解法研究 那些例习题有多种解法? 各个解法的关键是什么?不同解法的优劣如何? 解法是否具有典型性和代表性?能否用于解决其它问题或类似问题? 变式研究 那些例习题的逆命题和否命题成:立? 改变命题的条件、改变命题的结论、改变命题的形式(封闭题变为开放题、探究题等),改变命题的背景
22、可编制出那些正确的习题 等. 深化研究: 代表了那种类型?体现了何种数学思想方法?是否具有一般的规律? 能否推广 (质的推广和量的推广) 到一般? 特殊情况有哪些? 由命题的特征可联想到些什么?能否通过类比得出一些结论? 等二、.近几年高考对本单元内容考察的分析(目的是通过对近几年高考试题的分析研究,便于了解与掌握本单元内容的教学重点和标高)主要研究近几年高考对该部分知识的考察内容、方式和程度.对高考试题的研究的主要内容为:高考试题考察了那些基础知识和基本技能?是以何种方式进行考察的?考察的程度与所占的比例为多少? 高考试题是怎样体现高中数学教学大纲和考纲要求的? 试题如何考察学生数学能力与学
23、习潜能的研究;试题对本单元教学有何启示?等。三、课时的划分与教学目标的确定 根据教材的内容的分析指出本单元的教学重点和教学目标,可划分为几个课时,各个课时相互之间的关系与作用。例如,抛物线一节可分为两个课时。第一课时为抛物线的定义与标准方程的推导;第二课时为抛物线的习题课。目的是巩固深化对抛物线定义的理解与熟练标准方式的运用,通过练习形成技能。四、学情分析学情分析分为一般的认知前提、思维特征的分析与本班学生能力起点分析、1、教学对象是对解析几何知识有一定理解的高二学生,他们在前面已学习过椭圆和双曲线的定义和标准方程,对于用轨迹思想推导标准方程这一思路应该有一定层次的认识,教学与前面圆锥曲线学习
24、有较大的可比性,因此本节推导解答展示部分不妨可以采用阅读自学的方式。2、学生虽然具有一定的分析问题和解决问题的能力,但在解题分析策略的思考上仍然缺乏理性的把握,同时逻辑思维上仍然缺乏冷静、严谨、深刻,数学语言表达能力也较差,因此本节教学中应注意把握进行思维训练。3、学生虽然进行了一段时间的解析几何学习,但对于其中所需要的计算量的恐惧心理仍难以克服,本节教学实是一个较好的机会能在一定程度上减轻学生的心理负担。五分课时设计 每课时设计应包括以下内容和栏目:【教学目标】【教学重点】【教学方法】【教学过程】【教学反思】以上栏目中,【教学过程】是重点,整个教学过程的设计要紧紧围绕着教学目标进行,并在如何
25、突出重点、突破难点方面采取切实有效的措施和方法,同时在如何激发学生学习的主动性和积极性,组织形式有效参与教学活动方面充分展示教师个人的教学风格和教学特色。第一课时第二课时范例: “抛物线及其标准方程”单元教学设计(选自人教版高中数学第二册(上)第八章第五节)成都航天中学 赵相彪一、教材分析1.在教材中的地位与作用(1)抛物线在初中以二次函数图象的形式初步探讨过,在物理上也研究过“抛物线是抛体的运动轨迹”,这些足以说明抛物线在实际生活中应用的广泛性,在这一带里我们将更深入地研究抛物线的定义及其标准方程。(2)抛物线是在学习了椭圆、双曲线的基础上研究的又一种圆锥曲线,它是以圆锥曲线统一定义(即第二
26、定义)进行展开学习的,由此形成了完整的圆锥曲线概念体系。本章对抛物线的安排篇幅不多,但与椭圆、双曲线的地位是一样的。利用抛物线定义推出抛物线标准方程,为以后用解析法研究抛物线的几何性质,本节起到一个承上启下的作用。(3)本节可通过类比的思想,由椭圆与双曲线的第二定义顺利得出抛物线及其焦点与准线的定义,接下来用轨迹思想建立恰当坐标系求出抛物线的标准方程,一共有四种(开口向上、向下、向左或向右),在教学过程中应重视标准方程中的“P”,P的几何意义以及焦点坐标、标准方程与P的关系是本节的重点,学生应掌握如何根据标准方程求P,焦点坐标与准线方程或根据三者求标准方程。2教材的编排体系分析教材内容呈现的顺
27、序是:回顾椭圆与双曲线的第二定义(P132练习2)根据的几何意义设计试验活动抛物线的定义轨迹思想推导抛物线的标准方程总结抛物线标准方程及相关概念标准方程的直接运用(例1、P132练习1、3、4,P133习题1、2、4)抛物线定义的灵活运用及定义法求解轨迹方程(例2、 P132练习5、P133习题3、)抛物线焦点弦长分析(例3、P133习题7)直线与抛物线关系分析(P133习题5、6)3. 例习题分析与教材挖掘教材在编排中尤其是P132练习2的设计实质上已经体现了圆锥曲线统一定义这一设想,因此在总结中不妨明示这一知识的整合结论。定义的教学中结合椭圆、双曲线定义中容易被忽视的条件的回顾,思考教材定
28、义叙述中的不严谨性(应要求:定点F不在定直线上),借此培养学生类比思维能力及严谨的思维意识。标准方程:由于焦点在不同坐标轴上及开口方向不同,抛物线方程有四种:几种不同形式,其中焦点所在坐标轴的字母是方程中一次项的变量,开口方向确定一次项系数的正负对抛物线来说,只有一个焦参数P,因此求其标准方程只需一个独立条件。我们初中已学过一元二次函数的图象是抛物线,不妨设计思考题:今天定义的抛物线与初中已学的抛物线从字面上看不一致,它们之间一定有某种内在联系,你能找出这种内在联系吗?以此培养学生比较研究的意识与能力。在例2的分析中可以考虑能否推广为“抛物线的拓展定义”;例3分析中注意进行思维优化:一是利用韦
29、达定理及弦长公式;二是运用抛物线定义推导焦点弦长公式,培养学生运用几何性质简化解析几何运算量的意识和能力。P133习题7的分析中有较大的研究价值,许多关于抛物线的高考题往往与这一结论有密切的关系。一是可以考虑其在不同标准方程下的变式结论研究,二是可以推广研究抛物线过定点P的弦在动态运动中所满足的隐含条件;三是其推导方法既可以运用一般联立方程组的思想,也可以运用抛物线中的点参法,这也是抛物线相关计算中的特色性方法;四是直线方程的设定形式局限性(如:斜率存在性问题)及其改良方法:如过X轴上一定点F(,0)的直线可设方程为。二、.近几年高考对本单元内容考察的分析近两年高考中对抛物线及其标准方程的考查
30、主要体现在: (1)抛物线定义及其标准方程的直接运用。如 (07广东文11)在平面直角坐标系中,已知抛物线关于轴对称,顶点在原点,且过点P(2,4),则该抛物线的方程是 07广东理11在平面直角系中,有一定点A(2,1),若线段OA的垂直平分线过抛物线y2=2px(p0)的焦点,则该抛物线的准线方程为。07全国II理12设F为抛物线y2=4x的焦点,A、B、C为抛物线上三点,若6。(2)抛物线中的点参法计算:如06全国理8抛物线y=-x2上的点到直线4x+3y-8=0距离的最小值是(A)A、B、C、D、306山东文15已知抛物线y2=4x,过点P(4,0)的直线与抛物线交于A(x1,y1),B
31、(x2,y2)两点,则的最小值是32。 (3)抛物线焦点弦几何性质考查:如 07江西文7连接抛物线x2=4y的焦点F与点M(1,0)所得线段与抛物线交于点A,设点O为坐标原点,则三解形OMA的面积为(B)A、B、C、1+D、 07全国理地11、抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分交于点A,AKl,垂足为K,则AKF的面积为(C)A、4B、C、D、8(4)抛物线的切线问题:(06福建)已知直线与抛物线相切,则(06湖南)曲线和在它们的交点处的两条切线与轴所围成的三角形的面积是 _.(5)直线与抛物线的位置关系分析: (2007江苏理)如图,在平面直角
32、坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点,一条垂直于轴的直线,分别与线段和直线交于,(1)若,求的值;(5分) (2)若为线段的中点,求证:为此抛物线的切线; (5分)(3)试问(2)的逆命题是否成立?说明理由。(4分)【点评】这里只罗列出了近两年本单元的高考试题,单缺乏对试题的进一步分析。三、课时的划分与教学目标的确定 本单元共分两个课时。第一课时为抛物线的定义与标准方程的推导;第二课时为抛物线的习题课。目的是巩固深化对抛物线定义的理解与熟练标准方式的运用,通过练习形成技能。四、学情分析1、教学对象是对解析几何知识有一定理解的高二学生,他们在前面已学习过椭圆和双曲线的定义和标
33、准方程,对于用轨迹思想推导标准方程这一思路应该有一定层次的认识,教学与前面圆锥曲线学习有较大的可比性,因此本节推导解答展示部分不妨可以采用阅读自学的方式。2、学生虽然具有一定的分析问题和解决问题的能力,但在解题分析策略的思考上仍然缺乏理性的把握,同时逻辑思维上仍然缺乏冷静、严谨、深刻,数学语言表达能力也较差,因此本节教学中应注意把握进行思维训练。3、学生虽然进行了一段时间的解析几何学习,但对于其中所需要的计算量的恐惧心理仍难以克服,本节教学实是一个较好的机会能在一定程度上减轻学生的心理负担。4.本班的学情分析(略)这部分请各个指教老师在第二次备课时补上!五分课时设计第一课时:抛物线的定义及四种
34、标准方程一、教学目标1.知识与技能:(1)掌握抛物线的定义、四种标准方程形式及其对应的点和准线。(2)能运用待定系数法求解抛物线的标准方程以及能解读标准方程中的焦点、准线等相关信息。(3) 理解参数p的几何意义。(4)了解圆锥曲线的统一定义。2.过程与方法:(1)能积极进行试验活动,并能用语言叙述活动所反应的数学条件和结论;(2)会用坐标法与轨迹思想建立抛物线的标准方程,进一步掌握解析几何的坐标法思想。3.情感与态度:通过经历对公式的探索,激发学生的求知欲,培养学生的主动探索精神,提高学生分析、对比、概括等方面的能力,同时培养严谨思维、创新思维。二、 教学的重点和难点1教学重点:(1)抛物线的
35、定义、焦点、准线。(2)抛物线的四种方程形式以及p的意义。2教学难点:(1)运用坐标法建立抛物线的标准方程。(2)抛物线定义及焦点、准线等知识的灵活运用。三、教学过程设计(一)复习旧知,设置活动,引入课题LMAF我们知道,到一个定点的距离和到一条定直线的距离的比是常数e的点的轨迹:(1)当e(0,1)时,轨迹是椭圆;当e(1,+)时,轨迹是双曲线,那么当e=1时轨迹是什么曲线呢?(学生回答)如图所示,L为黑板上的一条竖直直线,把一块三角板的一条直角边紧靠直线L,再把一条细绳的一端固定在三角板的另一条直角边的一点A,取绳长等于点A到直角顶点C的长(即点A到直线L的距离)并且把绳子的另一个端点固定
36、在小黑板上的一点F,用粉笔头将绳子绷紧,使点到粉笔头的一段绳子紧靠着三角板的A点所在直角边,然后将三角板沿着直线L上下滑动,粉笔头就在小黑板上描出了一条曲线。(1)让学生观察演示过程中,粉笔头M在运动过程中满足什么几何条件?(2)粉笔头M的运动轨迹是否为椭圆或一支双曲线为什么?通过学生对(1)(2)问题的讨论、归纳得出:粉笔头M在运动过程中,满足的几何条件是到定点的距离和它到定直线L的距离相等,予|MF|=|MC|。粉笔头M的轨迹既不是椭圆也不是双曲线,因为它不符合其定义,它是我们曾经研究过的抛物线,物理学中,抛物线被认为是抛体运动的轨迹,在数学中,抛物线是二次函数的图象。【板书课题:“抛物线
37、及其标准方程(1)”。】 【设计说明】以活动形式设计情景,激发学生的兴趣,为下面进行标准方程探求营造良好的氛围,同时考查培养学生对活动所反映的数学实质的观察与概括总结能力。(二)总结活动,概括定义,推导标准方程1、由学生给抛物线下定义定义:平面内与一个定点下和一条定直线L距离相等的点的轨迹叫做抛物线,点F是抛物线的焦点、直线L叫抛物线的准线(思考:若定点在定直线L上,轨迹是什么?)。【设计说明】此处关于抛物线定义的叙述应是教材编写上的一个疏忽,引导学生类比椭圆与双曲线定义的严谨性叙述,完成对隐含要求的挖掘,可以激发学生对思维严谨性的追求,这也是成就感较高的一次学习活动。 2、二次函数解析式应该
38、也体现抛物线的定义,那么如何在二次函数解析式中去寻找定义的解释这之间的联系是呢?以y=x2为例,要求我们由y=x2入手推导出曲线上的动点到某定点和定直线的距离相等,而导出形如P(x,y)到定点F(x0,y0)的距离到定直线L的距离,通过学生动笔变形拼凑,教师巡视指导后,由学生板演并进行讲述:它表示平面上动点P(x,y)到定点的距离正好等于它到直线的距离,符合抛物线的定义。3、标准方程(1)让学生回顾求曲线方程的步骤: (2)由于定点F到定直线L的距离是常数,可设为P(P0),要求学生自主探究:建立适当坐标系求出抛物线的方程。(3)学生在坐标系的建立过程中可能出现的三种不同情形的展示。分析一:以
39、L为y轴,过点F垂直于L的直线为y轴,建立坐标系,则定点F(P,0),动点M(x,y),得方程:。分析二:以定点F为原点,过F作垂直于L 直线为x轴建立坐标系,则定点F(O,O)L的方程为x=-p,动点M(x,y),得方程:。分析三:取过焦点下且垂直于L的直线为x轴,x轴与L交于点K,以线段KF的垂直平分线y轴建立直角坐标,则F(),L:,设动点M(x,y),则。.llFOFxyxyxyM(x,y)OF.(4)通过学生讨论、归纳的得出:(a)以上方程中的形式最简单,2P的几何意义是焦点到准线距离的2倍,应该以它作为抛物线的一种标准方程。(b)抛物线的标准方程还有其它三种形式,由学生自学课本P1
40、29-130,并指出要得到另三种形式的标准方程应该怎样建立恰当的平面直角坐标系。(c)求抛物线标准方程的关键是确定形式,求出参数P。(三)标准方程的直接运用,巩固基础例1(1):已知抛物线的标准方程是,求它的焦点坐标和准线方程。(2)已知抛物线的焦点为F(O,-2),求它的标准方程。例2:根据已知条件,写出抛物线的标准方程。(1) 经过点(2,2);(2)准线方程为;(3)焦点在直线x+y+1=0上。【设计说明】(1)学生自行解答,教师巡视,让解答正确的学生板演,同时将巡视过程中发现的典型错在全班进行更正。 (2)点评中着重分析一是标准方程中只有一个焦参数P,因此求其标准方程只需一个独立条件;
41、二是分析焦点位置是选择标准方程形式的重要依据,应注意分析是否可能需要讨论。(四)过手训练,及时反馈学习效果课堂练习(学生板演)1、课本P132 3,4。2、在平面直角坐标系中,若抛物线上的点P到该抛物线的焦点的距离为6,则点P的横竖标x= 5 。【设计说明】教学中应注意教学效果的及时信息反馈,做到教学有针对性和实效性。(五)课堂小结,知识体系化,巩固记忆1、抛物线的定义,四种标准方程的形式与P的几何意义。2、求抛物线的标准方程,由标准方程求准线方程、焦点坐标。3、运用坐标法求方程。4、抛物线定义的应用。(六)课后作业,分层布置必做题:教科书:P133 1、2、3、4选作题:补充题:指出抛物线的
42、焦点坐标、准线方程。解当a0时,焦点坐标为。当a0)推导课堂练习四种标准方程课堂小结 作业【板书设计】【教学反思】(略)第二课时:抛物线的习题课一、教学目标分析:1.知识与技能:(1)加深理解抛物线的定义,并拓展推广抛物线定义。(2)掌握定义法求解动点轨迹方程的基本步骤。(3) 掌握圆锥曲线弦长的计算思路和相关公式,总结焦点弦长公式。(4)掌握用联立方程组并结合韦达定理的方法,分析以直线与圆锥曲线相结合为背景的解几问题。2.过程与方法:(1) 理解求解轨迹的重要方法定义法以及其中所体现的数形结合思想。 (2)理解解析几何中关于方程分析中的重要思想方法设而不求; (3)运用相关几何性质优化解析几
43、何中代数计算过程。3.情感与态度:通过经历轨迹方程的求解,焦点弦长的计算公式的探求,经历探求成功的心理体验,激发学生主动探究的动机,提高学生对数形结合思想、创新思维的热情。二、 重点、难点1教学重点:(1)定义法求解轨迹方程;(2)用联立方程组并结合韦达定理的方法,分析抛物线弦长的计算思路和相关公式,总结焦点弦长公式2教学难点:(1)抛物线拓展定义的运用;(2)P133习题7的证明分析以及其推广研究。三、教学方法利用多媒体等辅助教学,采用探究、阅读、启发相结合的教学模式,并引导学生进行类比、自主探究等活动 。四、教学过程设计(一)(五)(略)(六)备选例题1、若直线y=kx-2与抛物线y2=8
44、x交A、B两点,且AB中点的横坐标为2,求它直线方程。分析(一)由直线与抛物线相交,利用韦达定理列出K的方程求解。解:设A(x1,y1)、B(x2,y2)则由 可得:直线与抛物线相交,k0且0,k-1,AB的中点坐标为2故所求直线方程为:y=2x-2分析(二)由于已知与直线斜率及中点坐标有关,用“作差法”求k。解:设A(x1,y1)、B(x2,y2),则两式作差得: 2、平面上动点P到定点F(1,0)的距离比P到y轴的距离大1,求动点P的轨迹方程。解法:(定义法)动点P到定点F(1,0)的距离比到y轴距离大1,由于F到y轴的距离为1,故当x0时,直线y=0上的点适合条件;当x0时,原命题条价于
45、点P到下(1,0)与到直线x=-1的距离相等,故点P在以F为焦点,x=-1为准线的抛物线上,其轨迹方程为y2=4x。 4x (x0)故所求动点P的轨迹方程为y2= 0 (x0) .解法二直接 :设P(X,Y),则有: Yy2=2x+2|x|4x (x0)y2= 0 (x0) 。故P点的轨迹方程为y2=4x(x0)或y=0(x0)稿件排版格式(1) 文稿统一用A4排版。页面设置(word默认设置)如下:上:31.7mm;下:25.4mm;左:31.7mm;右:25.4mm;2 整个文章行距为单倍行距,段前段后均为0;3 公式或数学式子、表格等一般居中排列;4内容格式按照范例。如一 、教材分析(一级标题:4号黑体,独占行,首行空两格,末尾不加标点)(一) (二级标题:小4号宋体加粗,独占行,首行空两格,末尾不加标点)1 (三级标题:小4号宋体,独占行,首行空两格,不加标点)(1) (四级标题:小4号宋体,首行空两格,可以不独占行,若不是独占行,则加标点,否则不加标点)以下类推正文,小4号宋体,首行空两格6页码:全文连续排印,置于右下角。附录四: 有关储蓄的计算的学案