资源描述
完整版初一数学下册期中测试卷及答案
一、选择题
1.下列各数是无理数的是()
A. B. C.3.1415926 D.﹣π
2.下列车标,可看作图案的某一部分经过平移所形成的是( )
A. B. C. D.
3.若点在第四象限内,则点的坐标可能是( )
A. B. C. D.
4.有下列四个命题:①对顶角相等;②同位角相等;③两点之间,直线最短;④连接直线外一点与直线上各点的所有线段中,垂线段最短.其中是真命题的个数有( )
A.0个 B.1个 C.2个. D.3个
5.如图,,将一个含角的直角三角尺按如图所示的方式放置,若的度数为,则的度数为( )
A. B. C. D.
6.下列说法正确的是( )
A.a2的正平方根是a B.
C.﹣1的n次方根是1 D.一定是负数
7.如图,将一张长方形纸片沿折叠.使顶点,分别落在点,处,交于点,若,则( )
A. B. C. D.
8.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),……,根据这个规律探索可得,第20个点的坐标为( )
A.(6,4) B.(6,5) C.(7,3) D.(7,5)
二、填空题
9.比较大小,请在横线上填“>”或“<”或“=”________.
10.在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是_____.
11.如图,已知△ABC是锐角三角形,BE、CF分别为∠ABC与∠ACB的角平分线,BE、CF相交于点O,若∠A=50°,则∠BOC=_______.
12.如下图,C岛在A岛的北偏东65°方向,在B岛的北偏西35°方向,则______度.
13.如图为一张纸片沿直线折成的V字形图案,已知图中,则______°.
14.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若,则m,n,p,q四个实数中,绝对值最大的是________.
15.已知点M在y轴上,纵坐标为4,点P(6,﹣4),则△OMP的面积是__.
16.如图所示,动点在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点,第二次接着运动到点,第三次接着运动到点,…,按这样的运动规律,经过次运动后,动点的坐标是________.
三、解答题
17.(1)-+; (2),求.
18.求下列各式中的值
(1)
(2)
19.如图,已知:,.
求证:.
证明:∵(已知),
∴∠______=∠______(______).
∵(______),
∴∠______(等量代换).
∴(______).
20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:A→B(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中
(1)A→C( , ),B→D( , ),C→ (+1, );
(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.
21.已知的平方根是,的立方根是4,的算术平方根是m.
(1)求m的值;
(2)如果,其中x是整数,且,求的值.
22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.
(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;
(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.
23.如图1,点在直线上,点在直线上,点在,之间,且满足.
(1)证明:;
(2)如图2,若,,点在线段上,连接,且,试判断与的数量关系,并说明理由;
(3)如图3,若(为大于等于的整数),点在线段上,连接,若,则______.
【参考答案】
一、选择题
1.D
解析:D
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:A.是循环小数,属于有理数,故本选项不合题意;
B.是分数,属于有理数,故本选项不合题意;
C.3.1415926是有限小数,属于有理数,故本选项不合题意;
D.﹣π是无理数,故本选项符合题意;
故选:D.
【点睛】
本题考查无理数、实数的分类等知识,是基础考点,掌握相关知识是解题关键.
2.D
【分析】
根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.
【详解】
解:A、不是经过平移所形成的,故此选项错误;
B、不是是经过平移所形成的,故此选项错误;
C、不是经过平
解析:D
【分析】
根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.
【详解】
解:A、不是经过平移所形成的,故此选项错误;
B、不是是经过平移所形成的,故此选项错误;
C、不是经过平移所形成的,故此选项错误;
D、是经过平移所形成的,故此选项正确;
故选:D.
【点睛】
此题主要考查了利用平移设计图案,关键是掌握平移定义.
3.B
【分析】
根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.
【详解】
根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有满足要求,
故选:B.
【点睛】
本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.
4.C
【分析】
根据对顶角的性质、线段的性质、平行线的性质、垂线段的性质进行解答即可.
【详解】
解:①对顶角相等,原命题是真命题;
②两直线平行,同位角相等,不是真命题;
③两点之间,线段最短,原命题不是真命题;
④直线外一点与直线上各点连接的所有线段中,垂线段最短,原命题是真命题.
故选:C.
【点睛】
此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
5.A
【分析】
过三角板60°角的顶点作直线EF∥AB,则EF∥CD,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可.
【详解】
如图,过三角板60°角的顶点作直线EF∥AB,
∵AB∥CD,
∴EF∥CD,
∴∠3=∠1,∠4=∠2,
∵∠3+∠4=60°,
∴∠1+∠2=60°,
∵∠1=25°,
∴∠2=35°,
故选A.
【点睛】
本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键.
6.D
【分析】
根据平方根、算术平方根、立方根的定义判断A、B、D,根据乘方运算法则判断C即可.
【详解】
A:a2的平方根是,当时,a2的正平方根是a,错误;
B:,错误;
C:当n是偶数时, ;当n时奇数时,,错误;
D:∵ ,∴一定是负数,正确
【点睛】
本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键.
7.B
【分析】
根据两直线平行,内错角相等求出,再根据平角的定义求出,然后根据折叠的性质可得,进而即可得解.
【详解】
解:∵在矩形纸片中,,,
,
,
∵折叠,
∴,
.
故选:B.
【点睛】
本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出是解题的关键,另外,根据折叠前后的两个角相等也很重要.
8.A
【分析】
横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.
【详
解析:A
【分析】
横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.
【详解】
解:把第一个点作为第一列,和作为第二列,
依此类推,则第一列有一个数,第二列有2个数,
第列有个数.则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.
因为,则第20个数一定在第6列,由下到上是第4个数.
因而第20个点的坐标是.
故选:A.
【点睛】
本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.
二、填空题
9.=
【分析】
先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可
【详解】
解:∵,
∴=
故答案为:=
【点睛】
本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌
解析:=
【分析】
先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可
【详解】
解:∵,
∴=
故答案为:=
【点睛】
本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌握相关的知识是解答此题的关键.
10.(2,﹣1)
【分析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标
解析:(2,﹣1)
【分析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数.
【详解】
解:点(2,1)关于x轴对称的点的坐标是(2,﹣1),
故答案为(2,﹣1).
【点睛】
熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称点,横坐标不变,纵坐标变成相反数.关于y轴的对称点,纵坐标不变,横坐标变成相反数.
11.115°
【详解】
因为∠A=50°,
∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,
∵BE、CF分别为∠ABC与∠ACB的角平分线,
∴∠OBC=∠ABC,∠OCB=∠ACB
解析:115°
【详解】
因为∠A=50°,
∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,
∵BE、CF分别为∠ABC与∠ACB的角平分线,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)= ×130°=65°,
在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=180°−65°=115°
12.100
【分析】
根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解.
【详解】
如图,作CE∥AD,则CE∥BF.
∵CE∥AD,∴=65°.
∵CE∥BF,∴=35°.
解析:100
【分析】
根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解.
【详解】
如图,作CE∥AD,则CE∥BF.
∵CE∥AD,∴=65°.
∵CE∥BF,∴=35°.
∴=65°35°=100°.
故答案为:100.
【点睛】
本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等.
13.70
【分析】
根据∠1+2∠2=180°求解即可.
【详解】
解:∵∠1+2∠2=180°,,
∴∠2=70°.
故答案为:70.
【点睛】
本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠
解析:70
【分析】
根据∠1+2∠2=180°求解即可.
【详解】
解:∵∠1+2∠2=180°,,
∴∠2=70°.
故答案为:70.
【点睛】
本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠2=180°是解答本题的关键.
14.【分析】
根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.
【详解】
∵,
∴n和q互为相反数,O在线段NQ的中点处,
∴绝对值最大的是点P表示的数.
故
解析:
【分析】
根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.
【详解】
∵,
∴n和q互为相反数,O在线段NQ的中点处,
∴绝对值最大的是点P表示的数.
故答案为:.
【点睛】
本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.
15.【分析】
由M点的位置易求OM的长,在根据三角形的面积公式计算可求解.
【详解】
解:∵M在y轴上,纵坐标为4,
∴OM=4,
∵P(6,﹣4),
∴S△OMP=OM•|xP|
=×4×6
=12
解析:【分析】
由M点的位置易求OM的长,在根据三角形的面积公式计算可求解.
【详解】
解:∵M在y轴上,纵坐标为4,
∴OM=4,
∵P(6,﹣4),
∴S△OMP=OM•|xP|
=×4×6
=12.
故答案为12.
【点睛】
本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键.
16.(1010,1011)
【分析】
仔细观察图形,找到图形变化的规律,利用规律求解即可.
【详解】
解:观察发现:
第一次运动到点(0,1),第二次运动到点(1,1);
第三次运动到点(1,2),第四
解析:(1010,1011)
【分析】
仔细观察图形,找到图形变化的规律,利用规律求解即可.
【详解】
解:观察发现:
第一次运动到点(0,1),第二次运动到点(1,1);
第三次运动到点(1,2),第四次运动到点(2,2);
第五次运动到点(2,3),第六次运动到点(3,3),
…,
当n为奇数时,第n次运动到点(,),
当n为偶数时,第n次运动到点(,),
所以经过2021次运动后,动点P的坐标是(1010,1011),
故答案为:(1010,1011).
【点睛】
本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.
三、解答题
17.(1) - (2)±3
【详解】
试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;
试题解析:
(1)原式= ;
(2)x2-4=5
x2=9
x=3或x=-3
解析:(1) - (2)±3
【详解】
试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;
试题解析:
(1)原式= ;
(2)x2-4=5
x2=9
x=3或x=-3
18.(1);(2).
【分析】
(1)根据平方根的性质,直接开方,即可解答;
(2)根据立方根,直接开立方,即可解答.
【详解】
解:(1)
,
.
(2)
.
【点睛】
本题考查平方根、立方根,
解析:(1);(2).
【分析】
(1)根据平方根的性质,直接开方,即可解答;
(2)根据立方根,直接开立方,即可解答.
【详解】
解:(1)
,
.
(2)
.
【点睛】
本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质.
19.;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【分析】
首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得C
解析:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【分析】
首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得CB∥DE.
【详解】
证明:∵AB∥CD,
∴∠B=∠C(两直线平行,内错角相等),
∵∠B+∠D=180°(已知),
∴∠C+∠D=180°(等量代换),
∴CB∥DE(同旁内角互补,两直线平行).
故答案为:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【点睛】
本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明.
20.(1)3,4,3,﹣2,D,﹣2;(2)见解析
【分析】
(1)根据向上向右走为正,向下向左走为负,可得答案;
(2)根据向上向右走为正,向下向左走为负,可得答案.
【详解】
解:(1)A→C( 3
解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析
【分析】
(1)根据向上向右走为正,向下向左走为负,可得答案;
(2)根据向上向右走为正,向下向左走为负,可得答案.
【详解】
解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2);
故答案为3,4;3,﹣2;D,﹣2;
(2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图
【点睛】
本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.
21.(1);(2).
【分析】
(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;
(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y
解析:(1);(2).
【分析】
(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;
(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y即可计算.
【详解】
(1)依题意得2a-1=9,11a+b-1=64,
解得a=5,b=10,
∴b-a=5,其算术平方根为,
∴m=
(2)x+y=10+
∵2<<3,
∴12<10+<13,
∴x=12,y=10+-12=-2
∴x-y=12-(-2)=
【点睛】
此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算.
22.(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程
解析:(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.
【详解】
解:(1)设长为3x,宽为2x,
则:3x•2x=30,
∴x=(负值舍去),
∴3x=,2x=,
答:这个长方形纸片的长为,宽为;
(2)正确.理由如下:
根据题意得:,
解得:,
∴大正方形的面积为102=100.
【点睛】
本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
23.(1)见解析;(2)见解析;(3)n-1
【分析】
(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;
(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据
解析:(1)见解析;(2)见解析;(3)n-1
【分析】
(1)连接AB,根据已知证明∠MAB+∠SBA=180°,即可得证;
(2)作CF∥ST,设∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根据AD∥BC,得到∠DAC=120°,求出∠CAE即可得到结论;
(3)作CF∥ST,设∠CBT=β,得到∠CBT=∠BCF=β,分别表示出∠CAN和∠CAE,即可得到比值.
【详解】
解:(1)如图,连接,
,
,
,
,
(2),
理由:作,则 如图,
设,则.
,,
,,
.
即.
(3)作,则 如图,设,则.
,
,
,
,
,
故答案为.
【点睛】
本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式.
展开阅读全文