1、完整版初一数学下册期中测试卷及答案一、选择题1下列各数是无理数的是()ABC3.1415926D2下列车标,可看作图案的某一部分经过平移所形成的是( )A BCD3若点在第四象限内,则点的坐标可能是( )ABCD4有下列四个命题:对顶角相等;同位角相等;两点之间,直线最短;连接直线外一点与直线上各点的所有线段中,垂线段最短其中是真命题的个数有( )A0个B1个C2个D3个5如图,将一个含角的直角三角尺按如图所示的方式放置,若的度数为,则的度数为( )ABCD6下列说法正确的是()Aa2的正平方根是aBC1的n次方根是1D一定是负数7如图,将一张长方形纸片沿折叠使顶点,分别落在点,处,交于点,若
2、,则( )ABCD8如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),根据这个规律探索可得,第20个点的坐标为( )A(6,4)B(6,5)C(7,3)D(7,5)二、填空题9比较大小,请在横线上填“”或“”或“”_.10在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是_11如图,已知ABC是锐角三角形,BE、CF分别为ABC与ACB的角平分线,BE、CF相交于点O,若A=50,则BOC=_.12如下图,C岛在A岛的北偏东65方向,在B岛的北偏西35方向,则_度13如图为一张纸片沿
3、直线折成的V字形图案,已知图中,则_14如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若,则m,n,p,q四个实数中,绝对值最大的是_15已知点M在y轴上,纵坐标为4,点P(6,4),则OMP的面积是_16如图所示,动点在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点,第二次接着运动到点,第三次接着运动到点,按这样的运动规律,经过次运动后,动点的坐标是_三、解答题17(1); (2),求.18求下列各式中的值(1)(2)19如图,已知:,求证:证明:(已知),_(_)(_),_(等量代换)(_)20如图,一只甲虫在55的方格(每小格边长为1)上沿着网格线
4、运动它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负如果从A到B记为:AB(1,4),从B到A记为:AB(1,4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)AC( , ),BD( , ),C (1, );(2)若这只甲虫从A处去甲虫P处的行走路线依次为(2,2),(1,1),(2,3),(1,2),请在图中标出P的位置21已知的平方根是,的立方根是4,的算术平方根是m(1)求m的值;(2)如果,其中x是整数,且,求的值22数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,
5、面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由23如图1,点在直线上,点在直线上,点在,之间,且满足(1)证明:;(2)如图2,若,点在线段上,连接,且,试判断与的数量关系,并说明理由;(3)如图3,若(为大于等于的整数),点在线段上,连接,若,则_【参考答案】一、选择题1D解析:D【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概
6、念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:A是循环小数,属于有理数,故本选项不合题意;B是分数,属于有理数,故本选项不合题意;C3.1415926是有限小数,属于有理数,故本选项不合题意;D是无理数,故本选项符合题意;故选:D【点睛】本题考查无理数、实数的分类等知识,是基础考点,掌握相关知识是解题关键2D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平解析:D【分析】根据平移定义:一个基本
7、图案按照一定的方向平移一定的距离进行分析即可【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平移所形成的,故此选项错误;D、是经过平移所形成的,故此选项正确;故选:D【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义3B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有满足要求,故选:B【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键4C【分析】根据对顶角的性质、线段的性质、平行线的性质、垂线段的性质进
8、行解答即可【详解】解:对顶角相等,原命题是真命题;两直线平行,同位角相等,不是真命题;两点之间,线段最短,原命题不是真命题;直线外一点与直线上各点连接的所有线段中,垂线段最短,原命题是真命题故选:C【点睛】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理5A【分析】过三角板60角的顶点作直线EFAB,则EFCD,利用平行线的性质,得到3+4=1+2=60,代入计算即可【详解】如图,过三角板60角的顶点作直线EFAB,ABCD,EFCD,3=1,4=2,3+4=60,1+2=60,1=25,2=35,故选A【点睛】本题考查了平行线的辅助
9、线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键6D【分析】根据平方根、算术平方根、立方根的定义判断A、B、D,根据乘方运算法则判断C即可【详解】A:a2的平方根是,当时,a2的正平方根是a,错误;B:,错误;C:当n是偶数时, ;当n时奇数时,错误;D: ,一定是负数,正确【点睛】本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键7B【分析】根据两直线平行,内错角相等求出,再根据平角的定义求出,然后根据折叠的性质可得,进而即可得解【详解】解:在矩形纸片中,折叠,故选:B【点睛】本题考查了平行线的性质以及折叠的性质,根据两直
10、线平行,内错角相等求出是解题的关键,另外,根据折叠前后的两个角相等也很重要8A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数【详解析:A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数【详解】解:把第一个点作为第一列,和作为第二列,依此类推,则第一列有一个数,第二列有2个数,第列有个数则列共有个数,并且在奇数列点的顺序是由上
11、到下,偶数列点的顺序由下到上因为,则第20个数一定在第6列,由下到上是第4个数因而第20个点的坐标是故选:A【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目二、填空题9【分析】先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可【详解】解:,=故答案为:【点睛】本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌解析:【分析】先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可【详解】解:,=故答案为:【点睛】本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌握相
12、关的知识是解答此题的关键10(2,1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标解析:(2,1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数【详解】解:点(2,1)关于x轴对称的点的坐标是(2,1),故答案为(2,1)【点睛】熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称点,横坐标不变,纵坐
13、标变成相反数关于y轴的对称点,纵坐标不变,横坐标变成相反数11115【详解】因为A=50,ABC+ACB=180A=18050=130,BE、CF分别为ABC与ACB的角平分线,OBC=ABC,OCB=ACB解析:115【详解】因为A=50,ABC+ACB=180A=18050=130,BE、CF分别为ABC与ACB的角平分线,OBC=ABC,OCB=ACB,OBC+OCB=(ABC+ACB)= 130=65,在OBC中,BOC=180(OBC+OCB)=18065=11512100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解【详解】如图,作CEAD,则C
14、EBFCEAD,=65CEBF,=35解析:100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解【详解】如图,作CEAD,则CEBFCEAD,=65CEBF,=35=6535=100故答案为:100【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线两直线平行,内错角相等1370【分析】根据1+22=180求解即可【详解】解:1+22=180,2=70故答案为:70【点睛】本题考查了折叠的性质,角的和差计算,由图得出1+2解析:70【分析】根据1+22=180求解即可【详解】解:1+22=180,2=70故答案为:70【点睛】本题考查了折叠的
15、性质,角的和差计算,由图得出1+22=180是解答本题的关键14【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决【详解】,n和q互为相反数,O在线段NQ的中点处,绝对值最大的是点P表示的数故解析:【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决【详解】,n和q互为相反数,O在线段NQ的中点处,绝对值最大的是点P表示的数故答案为:【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答15【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解【详解】解:M在y轴上,
16、纵坐标为4,OM4,P(6,4),SOMPOM|xP|4612解析:【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解【详解】解:M在y轴上,纵坐标为4,OM4,P(6,4),SOMPOM|xP|4612故答案为12【点睛】本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键16(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可【详解】
17、解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),当n为奇数时,第n次运动到点(,), 当n为偶数时,第n次运动到点(,),所以经过2021次运动后,动点P的坐标是(1010,1011),故答案为:(1010,1011)【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标三、解答题17(1) (2)3 【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;试题解析:(1
18、)原式 ;(2)x2-4=5x2=9x=3或x=-3解析:(1) (2)3 【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;试题解析:(1)原式 ;(2)x2-4=5x2=9x=3或x=-318(1);(2)【分析】(1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答【详解】解:(1),(2)【点睛】本题考查平方根、立方根,解析:(1);(2)【分析】(1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答【详解】解:(1),(2)【点睛】本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质19;
19、C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得B=C,再由B+D=180,可得C+D=180,根据同旁内角互补,两直线平行可得C解析:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得B=C,再由B+D=180,可得C+D=180,根据同旁内角互补,两直线平行可得CBDE【详解】证明:ABCD,B=C(两直线平行,内错角相等),B+D=180(已知),C+D=180(等量代换),CBDE(同旁内角互补,两直线平行)故答案为:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【点睛】本题考
20、查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明20(1)3,4,3,2,D,2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案【详解】解:(1)AC( 3解析:(1)3,4,3,2,D,2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案【详解】解:(1)AC( 3,4),BD(32),CD(1,2);故答案为3,4;3,2;D,2;(2)这只甲虫从A处去甲虫P处的行走路线依次为(2,2),(
21、1,1),(2,3),(1,2),请在图中标出P的位置,如图【点睛】本题主要考查了用有序实数对表示路线读懂题目信息,正确理解行走路线的记录方法是解题的关键21(1);(2)【分析】(1)根据9的平方根为3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y解析:(1);(2)【分析】(1)根据9的平方根为3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y即可计算.【详解】(1)依题意得2a-1=9,11a+b-1
22、=64,解得a=5,b=10,b-a=5,其算术平方根为,m=(2)x+y=10+23,1210+13,x=12,y=10+-12=-2x-y=12-(-2)=【点睛】此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算.22(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程解析:(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两
23、个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积【详解】解:(1)设长为3x,宽为2x,则:3x2x=30,x=(负值舍去),3x=,2x=,答:这个长方形纸片的长为,宽为;(2)正确理由如下:根据题意得:,解得:,大正方形的面积为102=100【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键23(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明MAB+SBA=180,即可得证;(2)作CFST,设CBT=,表示出CAN,ACF,BCF,根据解析:(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明MAB+SBA=180,即可得证;(2)作CFST,设CBT=,表示出CAN,ACF,BCF,根据ADBC,得到DAC=120,求出CAE即可得到结论;(3)作CFST,设CBT=,得到CBT=BCF=,分别表示出CAN和CAE,即可得到比值【详解】解:(1)如图,连接,(2),理由:作,则 如图,设,则,即(3)作,则 如图,设,则,故答案为【点睛】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式