收藏 分销(赏)

高中数学导数与应用知识点汇总.doc

上传人:丰**** 文档编号:4672084 上传时间:2024-10-09 格式:DOC 页数:10 大小:749.54KB
下载 相关 举报
高中数学导数与应用知识点汇总.doc_第1页
第1页 / 共10页
高中数学导数与应用知识点汇总.doc_第2页
第2页 / 共10页
高中数学导数与应用知识点汇总.doc_第3页
第3页 / 共10页
高中数学导数与应用知识点汇总.doc_第4页
第4页 / 共10页
高中数学导数与应用知识点汇总.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、. .导数知识点归纳及其应用知识点归纳一、相关概念1导数的概念函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)f(x),比值叫做函数y=f(x)在x到x+之间的平均变化率,即=。如果当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f(x)或y|。即f(x)=。说明:(1)函数f(x)在点x处可导,是指时,有极限。如果不存在极限,就说函数在点x处不可导,或说无导数。(2)是自变量x在x处的改变量,时,而是函数值的改变量,可以是零。由导数的定义可知,求函数y=f(x)在点x处的导数的步骤: 求函数的增量=f(x+)f(x

2、); 求平均变化率=; 取极限,得导数f(x)=。例:设f(x)= x|x|, 则f( 0)= .解析: f( 0)=02导数的几何意义函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x)处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x)处的切线的斜率是f(x)。相应地,切线方程为yy=f/(x)(xx)。例:在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是( )A3B2C1D0解析:切线的斜率为又切线的倾斜角小于,即故解得:故没有坐标为整数的点3.导数的物理意义如果物体运动的规律是s=s(t),那么该物体在时刻t的瞬间速度v=(t)。 如

3、果物体运动的速度随时间的变化的规律是v=v(t),则该物体在时刻t的加速度a=v(t)。例。汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图像可能是( )stOAstOstOstOBCD答:A。练习:已知质点M按规律做直线运动(位移单位:cm,时间单位:s)。(1) 当t=2,时,求;(2) 当t=2,时,求;(3) 求质点M在t=2时的瞬时速度。答案:(1)8.02(2)8.002;(3)8二、导数的运算1基本函数的导数公式: (C为常数); ; ; .例1:下列求导运算正确的是 ( )A(x+ B(log2x)= C(3x)=3xlog3

4、e D (x2cosx)=-2xsinx 例2:设f0(x) sinx,f1(x)f0(x),f2(x)f1(x),fn1(x) fn(x),nN,则f2005(x)( )Asinx Bsinx Ccosx Dcosx2导数的运算法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:若C为常数,则.即常数与函数的积的导数等于常数乘以函数的导数: 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:(v0)。例:设f(x

5、)、g(x)分别是定义在R上的奇函数和偶函数,当x0时,0.且g(3)=0.则不等式f(x)g(x)0的解集是 ( )A (-3,0)(3,+) B (-3,0)(0, 3) C (-,- 3)(3,+) D (-,- 3)(0, 3)解析:当x0时,0 ,即 当x0时,f(x)g(x)为增函数,又g(x)是偶函数且g(3)=0,g(-3)=0,f(-3)g(-3)=0故当时,f(x)g(x)0,又f(x)g(x)是奇函数,当x0时,f(x)g(x)为增函数,且f(3)g(3)=0故当时,f(x)g(x)0故选D3.复合函数的导数形如y=f的函数称为复合函数。复合函数求导步骤:分解求导回代。法

6、则:y|= y| u|或者.练习:求下列各函数的导数: (1) (2) (3) (4)三、导数的应用1.函数的单调性与导数(1)设函数在某个区间(a,b)可导,如果,则在此区间上为增函数;如果,则在此区间上为减函数。(2)如果在某区间内恒有,则为常数。例:函数是减函数的区间为( )AB C D(0,2) 2极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;例:函数已知时取得极值,则= ( )A2 B3 C4 D53最值:在区间a,b上连续的函数f在a,b上必有最大值与最小值。但在开区间(a,b)

7、内连续函数f(x)不一定有最大值,例如。求最值步骤:求函数在(a,b)内的极值;求函数在区间端点的值(a)、(b);将函数的各极值与(a)、(b)比较,其中最大的是最大值,其中最小的是最小值。说明:(1)函数的最大值和最小值是一个整体性的概念,最大值必须是整个区间上所有函数值中的最大值,最小值必须在整个区间上所有函数值中的最小值。(2)函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附件的函数值得出来的。函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点处必

8、定是极值。例:函数在闭区间-3,0上的最大值、最小值分别是 .经典例题选讲例1. 已知函数的图象如图所示(其中 是函数的导函数),下面四个图象中的图象大致是 ( )例2.设恰有三个单调区间,试确定a的取值范围,并求其单调区间。例3. 已知函数的图象过点P(0,2),且在点M处的切线方程为. ()求函数的解析式;()求函数的单调区间.例4. 设函数,已知是奇函数。()求、的值。 ()求的单调区间与极值。例5. 已知f(x)=在x=1,x=时,都取得极值。(1)求a、b的值。(2)若对,都有恒成立,求c的取值范围。例6. 已知是函数的一个极值点,其中,(I)求与的关系式;(II)求的单调区间;(I

9、II)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值范围.例7:(2009天津理20)已知函数其中(1) 当时,求曲线处的切线的斜率;w.w.w.k.s.5.u.c.o.m (2) 当时,求函数的单调区间与极值。w.w.w.k.s.5.u.c.o.m 本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。满分12分。参考答案:例1 解析:由函数的图象可知:当时, 0,此时增当时,0,0,此时减当时,0,0,0,此时增,故选C例2.解:若,对恒成立,此时只有一个单调区间,矛盾若, ,也只有一个单调区间,矛盾若 ,此时恰有三个

10、单调区间 且单调减区间为和,单调增区间为例3 .解:()由的图象经过P(0,2),知d=2,所以由在处的切线方程是,知故所求的解析式是 ()解得 当当故内是增函数,在内是减函数,在内是增函数.例4. 解:(),。从而是 一个奇函数,所以得,由奇函数定义得;()由()知,从而,由此可知,和是函数是单调递增区间;是函数是单调递减区间;在时,取得极大值,极大值为,在时,取得极小值,极小值为。例5. 解:(1)由题意f/(x)=的两个根分别为1和 由韦达定理,得:1=, 则,(2)由(1),有f(x)=,f/(x)= 当时,当时,当时,当时,有极大值, 当,的最大值为 对,都有恒成立, 解得或例6.解

11、:(I)因为是函数的一个极值点,所以,即,所以(II)由(I)知,=当时,有,当变化时,与的变化如下表:100调调递减极小值单调递增极大值单调递减故有上表知,当时,在单调递减,在单调递增,在上单调递减.(III)由已知得,即又所以即设,其函数开口向上,由题意知式恒成立,所以解之得 又 所以 即的取值范围为例7.解:(I)(II) w.w.w.k.s.5.u.c.o.m 以下分两种情况讨论。(1),则.当变化时,的变化情况如下表:+00+极大值极小值 w.w.w.k.s.5.u.c.o.m (2),则,当变化时,的变化情况如下表:+00+极大值极小值欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。赠语; 1、如果我们做与不做都会有人笑,如果做不好与做得好还会有人笑,那么我们索性就做得更好,来给人笑吧! 2、现在你不玩命的学,以后命玩你。3、我不知道年少轻狂,我只知道胜者为王。4、不要做金钱、权利的奴隶;应学会做“金钱、权利”的主人。5、什么时候离光明最近?那就是你觉得黑暗太黑的时候。6、最值得欣赏的风景,是自己奋斗的足迹。7、压力不是有人比你努力,而是那些比你牛几倍的人依然比你努力。 Word格式

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服