资源描述
2015年12月18日花枪太宝的初中数学组卷
一.解答题(共10小题)
1.(2014秋•故城县期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?
(2)将图1中的三角板绕点O顺时针旋转图2,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.
2.(2013秋•江西期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.
(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 (直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.
3.(2014春•江阴市期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(2)将图1中的三角板绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 秒(直接写出结果);
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
4.(2014秋•张家港市期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,另一边ON仍在直线AB的下方.
(1)若OM恰好平分∠BOC,求∠BON的度数;
(2)若∠BOM等于∠COM余角的3倍,求∠BOM的度数;
(3)若设∠BON=α(0°<α<90°),试用含α的代数式表示∠COM.
5.(2015秋•乐亭县期中)点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.
(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC= ;
(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;
(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.
6.(2014秋•漳州期末)如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠AOM= 度;
(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,若直线ON恰好平分∠AOC,则此时三角板绕点O旋转的时间是 秒.
7.(2014秋•太仓市期末)如图①,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方
(1)将图①中的三角板绕点O按逆时针方向旋转至图②,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:直线ON是否平分∠AOC?请说明理由.
(2)将图①中的三角板绕点O按每秒6°的速度逆时针方向旋转一周,在旋转的过程中,直线ON恰好平分∠AOC,求旋转时间t的值.
(3)将图①中的三角板绕点O按顺时针方向旋转至图③的位置,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,请说明理由.
8.(2013秋•曲阜市期末)如图1,点O为直线AB上一点,过O点作射线OC,使∠ACO:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图(1)中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为 度;
(2)继续将图2中的直角三角板绕点O按逆时针方向旋转至ON落在∠AOC的内部(如图3位置).
①当三角板的直角边ON恰好平分∠AOC时,此时三角板从图2位置旋转到该位置时旋转的角度为 度.
②试探究图3位置时,∠AOM与∠CON之间满足什么等量关系,并说明理由.
9.(2013秋•昌平区期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC=2:1,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.
(1)将图1中的三角板绕点O按顺时针方向旋转至图2的位置,使得OM落在射线OA上,此时ON旋转的角度为 °;
(2)继续将图2中的三角板绕点O按顺时针方向旋转至图3的位置,使得OM在∠BOC的内部,则∠BON﹣∠COM= °;
(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按每秒钟15°的速度旋转,当OM恰为∠BOC的平分线时,此时,三角板绕点O的运动时间为 秒,简要说明理由.
10.(2013秋•成都期末)如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为 度;
(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.
2015年12月18日花枪太宝的初中数学组卷
参考答案与试题解析
一.解答题(共10小题)
1.(2014秋•故城县期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?
(2)将图1中的三角板绕点O顺时针旋转图2,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.
【考点】角的计算.菁优网版权所有
【分析】(1)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值;
(2)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.
【解答】解:(1)∵三角板绕点O按每秒10°的速度沿逆时针方向旋转,
∴第t秒时,三角板转过的角度为10°t,
当三角板转到如图①所示时,∠AON=∠CON
∵∠AON=90°+10°t,∠CON=∠BOC+∠BON=120°+90°﹣10°t=210°﹣10°t
∴90°+10°t=210°﹣10°t
即t=6;
当三角板转到如图②所示时,∠AOC=∠CON=180°﹣120°=60°
∵∠CON=∠BOC﹣∠BON=120°﹣(10°t﹣90°)=210°﹣10°t
∴210°﹣10°t=60°
即t=15;
当三角板转到如图③所示时,∠AON=∠CON=,
∵∠CON=∠BON﹣∠BOC=(10°t﹣90°)﹣120°=10°t﹣210°
∴10°t﹣210°=30°
即t=24;
当三角板转到如图④所示时,∠AON=∠AOC=60°
∵∠AON=10°t﹣180°﹣90°=10°t﹣270°
∴10°t﹣270°=60°
即t=33.
故t的值为6、15、24、33.
(2)∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°
【点评】本题主要考查角的和、差关系,此题很复杂,难点是找出变化过程中的不变量,需要结合图形来计算,在计算分析的过程中注意动手操作,在旋转的过程中得到不变的量.
2.(2013秋•江西期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.
(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 10或40 (直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.
【考点】角平分线的定义;角的计算;旋转的性质.菁优网版权所有
【分析】(1)由角的平分线的定义和等角的余角相等求解;
(2)由∠BOC=120°可得∠AOC=60°,则∠RON=30°,即旋转60°或240°时ON平分∠AOC,据此求解;
(3)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,然后作差即可.
【解答】解:(1)直线ON平分∠AOC.理由:
设ON的反向延长线为OD,
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵OM⊥ON,
∴∠MOD=∠MON=90°,
∴∠COD=∠BON,
又∵∠AOD=∠BON(对顶角相等),
∴∠COD=∠AOD,
∴OD平分∠AOC,
即直线ON平分∠AOC.
(2)∵∠BOC=120°
∴∠AOC=60°,
∴∠BON=∠COD=30°,
即旋转60°时ON平分∠AOC,
由题意得,6t=60°或240°,
∴t=10或40;
(3)∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.
【点评】此题考查了角平分线的定义,应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.
3.(2014春•江阴市期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(2)将图1中的三角板绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 12或30 秒(直接写出结果);
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
【考点】角的计算;角平分线的定义;三角形内角和定理.菁优网版权所有
【专题】计算题.
【分析】(1)由角的平分线的定义和等角的余角相等求解;
(2)由∠BOC=120°可得∠AOC=60°,则∠AON=30°或∠NOR=30°,即顺时针旋转300°或120°时ON平分∠AOC,据此求解;
(3)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,然后作差即可.
【解答】解:(1)已知∠AOC=60°,
∴∠BOC=120°,
又OM平分∠BOC,
∠COM=∠BOC=60°,
∴∠CON=∠COM+90°=150°;
(2)延长NO,
∵∠BOC=120°
∴∠AOC=60°,
当直线ON恰好平分锐角∠AOC,
∴∠AOD=∠COD=30°,
即顺时针旋转300°时NO延长线平分∠AOC,
由题意得,10t=300°
∴t=30,
当NO平分∠AOC,
∴∠NOR=30°,
即顺时针旋转120°时NO平分∠AOC,
∴10t=120°,
∴t=12,
∴t=12或30;
(3)∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°,
所以∠AOM与∠NOC之间的数量关系为:∠AOM﹣∠NOC=30°.
【点评】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.
4.(2014秋•张家港市期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,另一边ON仍在直线AB的下方.
(1)若OM恰好平分∠BOC,求∠BON的度数;
(2)若∠BOM等于∠COM余角的3倍,求∠BOM的度数;
(3)若设∠BON=α(0°<α<90°),试用含α的代数式表示∠COM.
【考点】角的计算;角平分线的定义;余角和补角.菁优网版权所有
【分析】(1)利用角平分线求出∠BOM的度数,又∠MON=90°,所以∠BON=∠MON﹣∠BOM,即可解答;
(2)设∠COM的余角为x°,则∠COM=(90﹣x)°,由题意列出方程3x+90﹣x=120,解出x,即可解答;
(3)利用角的和与差计算.
【解答】解:(1)∵∠BOC=120°,OM恰好平分∠BOC,
∴∠BOM=∠BOC=60°,
又∵∠MON=90°,
∴∠BON=∠MON﹣∠BOM=90°﹣60°=30°.
(2)设∠COM的余角为x°,则∠COM=(90﹣x)°,
由题意得:3x+90﹣x=120,
解得:x=15,
3x=45,
所以∠BOM的度数为45°.
(3)∵∠BON=α(0°<α<90°),
∴∠BOM=90°﹣α,
∴∠COM=120°﹣∠BOM=120°﹣(90°﹣α)=30°+α.
【点评】本题考查了有关角的计算,解决本题的关键是观察图形,得出角之间的和与差的关系.
5.(2015秋•乐亭县期中)点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.
(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC= 25° ;
(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;
(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.
【考点】角的计算.菁优网版权所有
【专题】计算题.
【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数.
(2)根据OC是∠MOB的角平分线,∠BOC=65°可以求得∠BOM的度数,由∠NOM=90°,可得∠BON的度数,从而可得∠CON的度数.
(3)由∠BOC=65°,∠NOM=90°,∠NOC=∠AOM,从而可得∠NOC的度数,由∠BOC=65°,从而得到∠NOB的度数.
【解答】解:(1)∵∠MON=90°,∠BOC=65°,
∴∠MOC=∠MON﹣∠BOC=90°﹣65°=25°.
故答案为:25°.
(2)∵∠BOC=65°,OC是∠MOB的角平分线,
∴∠MOB=2∠BOC=130°.
∴∠BON=∠MOB﹣∠MON
=130°﹣90°
=40°.
∠CON=∠COB﹣∠BON
=65°﹣40°
=25°.
(3)∵∠NOC∠AOM,
∴∠AOM=4∠NOC.
∵∠BOC=65°,
∴∠AOC=∠AOB﹣∠BOC
=180°﹣65°
=115°.
∵∠MON=90°,
∴∠AOM+∠NOC=∠AOC﹣∠MON
=115°﹣90°
=25°.
∴4∠NOC+∠NOC=25°.
∴∠NOC=5°.
∴∠NOB=∠NOC+∠BOC=70°.
【点评】本题考查角的计算和旋转的知识,关键是明确题意,灵活变化,找出所求问题需要的量.
6.(2014秋•漳州期末)如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠AOM= 120 度;
(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,若直线ON恰好平分∠AOC,则此时三角板绕点O旋转的时间是 6或24 秒.
【考点】角的计算.菁优网版权所有
【分析】(1)根据OM恰好平分∠BOC,用∠BOC的度数除以2,求出∠BOM的度数,即可求出∠AOM的度数是多少.
(2)首先根据∠AOM﹣∠NOC=30°,∠BOC=120°,求出∠A0C=60°,然后根据∠AON=90°﹣∠AOM=60°﹣∠NOC,判断出∠AOM与∠NOC之间满足什么等量关系即可.
(3)首先设三角板绕点O旋转的时间是x秒,根据∠BOC=120°,可得∠AOC=60°,∠BON=∠COD=30°;然后根据旋转60°时ON平分∠AOC,可得10x=60或10x=240,据此求出x的值是多少即可.
【解答】解:(1)∵OM恰好平分∠BOC,
∴∠BOM=120°÷2=60°,
∴∠AOM=180°﹣120°=60°.
(2)如图3,,
∠AOM﹣∠NOC=30°,
∵∠BOC=120°,
∴∠A0C=60°,
∵∠AON=90°﹣∠AOM=60°﹣∠NOC,
∴∠AOM﹣∠NOC=30°.
(3)设三角板绕点O旋转的时间是x秒,
∵∠BOC=120°,
∴∠AOC=60°,
∴∠BON=∠COD=30°,
∴旋转60°时ON平分∠AOC,
∵10x=60或10x=240,
∴x=6或x=24,
即此时三角板绕点O旋转的时间是6或24秒.
故答案为:120、6或24.
【点评】此题主要考查了角的计算,考查了分类讨论思想的应用,以及角平分线的性质和应用,要熟练掌握.
7.(2014秋•太仓市期末)如图①,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方
(1)将图①中的三角板绕点O按逆时针方向旋转至图②,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:直线ON是否平分∠AOC?请说明理由.
(2)将图①中的三角板绕点O按每秒6°的速度逆时针方向旋转一周,在旋转的过程中,直线ON恰好平分∠AOC,求旋转时间t的值.
(3)将图①中的三角板绕点O按顺时针方向旋转至图③的位置,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,请说明理由.
【考点】角的计算;角平分线的定义.菁优网版权所有
【分析】(1)由角的平分线的定义和等角的余角相等求解;
(2)由∠BOC=120°可得∠AOC=60°,则∠RON=30°,即旋转60°或240°时ON平分∠AOC,据此求解;
(3)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,然后作差即可.
【解答】解:(1)直线ON平分∠AOC.理由:
设ON的反向延长线为OD,
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵OM⊥ON,
∴∠MOD=∠MON=90°,
∴∠COD=∠BON,
又∵∠AOD=∠BON(对顶角相等),
∴∠COD=∠AOD,
∴OD平分∠AOC,
即直线ON平分∠AOC.
(2)∵∠BOC=120°
∴∠AOC=60°,
∴∠BON=∠COD=30°,
即旋转60°时ON平分∠AOC,
由题意得,6t=60°或240°,
∴t=10或40;
(3)∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.
【点评】此题考查了角平分线的定义,应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.
8.(2013秋•曲阜市期末)如图1,点O为直线AB上一点,过O点作射线OC,使∠ACO:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图(1)中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为 90 度;
(2)继续将图2中的直角三角板绕点O按逆时针方向旋转至ON落在∠AOC的内部(如图3位置).
①当三角板的直角边ON恰好平分∠AOC时,此时三角板从图2位置旋转到该位置时旋转的角度为 150 度.
②试探究图3位置时,∠AOM与∠CON之间满足什么等量关系,并说明理由.
【考点】旋转的性质.菁优网版权所有
【分析】(1)根据旋转的性质知,旋转角是∠MON;
(2)①如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°,进而得出∠AON=30°,∠AOM=60°,根据旋转的性质即可求得旋转角度为150°;
②由∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,即可推知∠AOM﹣∠NOC=30°.
【解答】解:(1)由旋转的性质知,旋转角∠MON=90°.
故答案是:90;
(2)①如图3,设∠AOC=α,由∠AOC:∠BOC=1:2可得∠BOC=2α.
∵∠AOC+∠BOC=180°,
∴α+2α=180°.
解得 α=60°.
即∠AOC=60°.
当三角板的直角边ON恰好平分∠AOC时,∠AON=30°,
∴∠AOM=60°,
∴旋转角度为:90°+60°=150°;
故答案为:150;
②∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.
故∠AOM﹣∠NOC=30°.
【点评】本题综合考查了旋转的性质,角的计算.认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键..
9.(2013秋•昌平区期末)如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC=2:1,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.
(1)将图1中的三角板绕点O按顺时针方向旋转至图2的位置,使得OM落在射线OA上,此时ON旋转的角度为 90 °;
(2)继续将图2中的三角板绕点O按顺时针方向旋转至图3的位置,使得OM在∠BOC的内部,则∠BON﹣∠COM= 30 °;
(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按每秒钟15°的速度旋转,当OM恰为∠BOC的平分线时,此时,三角板绕点O的运动时间为 16 秒,简要说明理由.
【考点】旋转的性质;角平分线的定义;角的计算.菁优网版权所有
【分析】(1)根据旋转的性质知,旋转角∠MON=90°;
(2)分别求出∠BON=90°﹣∠BOM,∠COM=60°﹣∠BOM,则∠BON﹣∠COM=90°﹣∠BOM﹣60°+∠BOM=30°;
(3)易求∠AOM+∠AOC+∠COM′=240°,则三角板绕点O的运动时间为=16(秒).
【解答】解:(1)如图2,依题意知,旋转角是∠MON,且∠MON=90°.
故填:90;
(2)如图3,∠AOC:∠BOC=2:1,
∴∠AOC=120°,∠BOC=60°,
∵∠BON=90°﹣∠BOM,∠COM=60°﹣∠BOM,
∴∠BON﹣∠COM=90°﹣∠BOM﹣60°+∠BOM=30°,
故填:30;
(3)16秒.理由如下:
如图4.∵点O为直线AB上一点,∠AOC:∠BOC=2:1,
∴∠AOC=120°,∠BOC=60°.
∵OM恰为∠BOC的平分线,
∴∠COM′=30°.
∴∠AOM+∠AOC+∠COM′=240°.
∵三角板绕点O按每秒钟15°的速度旋转,
∴三角板绕点O的运动时间为=16(秒).
故填:16.
【点评】本题考查了旋转的性质,关键是应该认真审题并仔细观察图形,找到各个量之间的关系,并求出角的度数是解题的关键.
10.(2013秋•成都期末)如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为 90 度;
(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.
【考点】旋转的性质;角的计算.菁优网版权所有
【分析】(1)根据旋转的性质知,旋转角是∠MON;
(2)如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性质、图中角与角间的数量关系推知∠AOM﹣∠NOC=30°;
(3)需要分类讨论:(ⅰ)当直角边ON在∠AOC外部时,旋转角是60°;(ⅱ)当直角边ON在∠AOC内部时,旋转角是240°.
【解答】解:(1)由旋转的性质知,旋转角∠MON=90°.
故答案是:90;
(2)如图3,∠AOM﹣∠NOC=30°.
设∠AOC=α,由∠AOC:∠BOC=1:2可得
∠BOC=2α.
∵∠AOC+∠BOC=180°,
∴α+2α=180°.
解得 α=60°.
即∠AOC=60°.
∴∠AON+∠NOC=60°.①
∵∠MON=90°,
∴∠AOM+∠AON=90°.②
由②﹣①,得∠AOM﹣∠NOC=30°;
(3)(ⅰ)如图4,当直角边ON在∠AOC外部时,
由OD平分∠AOC,可得∠BON=30°.
因此三角板绕点O逆时针旋转60°.
此时三角板的运动时间为:
t=60°÷15°=4(秒).
(ⅱ)如图5,当直角边ON在∠AOC内部时,
由ON平分∠AOC,可得∠CON=30°.
因此三角板绕点O逆时针旋转240°.
此时三角板的运动时间为:
t=240°÷15°=16(秒).
【点评】本题综合考查了旋转的性质,角的计算.解答(3)题时,需要分类讨论,以防漏解.
第17页(共17页)
展开阅读全文