收藏 分销(赏)

高中一年级数学必修一解答题专项训练(附答案解析).doc

上传人:人****来 文档编号:4669338 上传时间:2024-10-09 格式:DOC 页数:13 大小:342.48KB
下载 相关 举报
高中一年级数学必修一解答题专项训练(附答案解析).doc_第1页
第1页 / 共13页
高中一年级数学必修一解答题专项训练(附答案解析).doc_第2页
第2页 / 共13页
高中一年级数学必修一解答题专项训练(附答案解析).doc_第3页
第3页 / 共13页
高中一年级数学必修一解答题专项训练(附答案解析).doc_第4页
第4页 / 共13页
高中一年级数学必修一解答题专项训练(附答案解析).doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、 完美WORD格式广铁一中2017学年上学期高一数学期中考试复习资料必修一模块必做解答题问题一:含参数分类讨论的集合综合运算问题1. 已知集合,集合.(1)当时,判断集合与集合的关系;(2)若,求实数的取值范围.2. 已知全集为实数集R,集合Ax|y,Bx|log2x1(1) 求AB,(CRB)A;(2) 已知集合Cx|1xa,若CA,求实数a的取值范围问题二:应用问题3. 通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散分析结果和实验表明,用f(x)表

2、示学生掌握和接受概念的能力f(x)的值越大,表示接受能力越强,x表示提出和讲授概念的时间(单位:分),可以有以下公式:f(x)(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟?(2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?(3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题? 4. 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用新工艺,把二氧化碳转化为一种可利用的产品已知该单位每月处理二氧化碳最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可

3、近似表示为yx2200x80 000,且每处理1吨二氧化碳得到可利用的化工产品价值为100元(1)若该单位每月成本支出不超过105 000元,求月处理量x的取值范围(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?问题三 函数性质的综合应用(奇偶性和单调性)5.已知指数函数yg(x)满足g(3)8,且定义域为R的函数f(x)是奇函数(1) 求yg(x)与yf(x)的解析式;(2) 判断yf(x)在R上的单调性并用单调性定义证明6. 已知函数为奇函数(1)求实数a的值. (2)探究的单调性,并证明你的结论.(3)求满足的的范围.问题四:抽象

4、函数奇偶性与单调性的综合应用7.设奇函数f(x)的定义域为(3,3),且对任意x,y,都有f(x)f(y)f(xy),当x0,f(1)2.(1)求f(2)的值; (2)判断f(x)的单调性,并证明;(3)若函数g(x)f(x1)f(32x),求不等式g(x)0的解集8. 设函数yf(x)的定义域为R,并且满足f(xy)f(x)f(y),f1,当x0时,f(x)0.(1)求f(0)的值; (2)判断函数的奇偶性;(3)如果f(x)f(2x)0时,的解析式;(2)若函数有三个不同零点,求实数a的取值范围10.(1)为何值时,.有且仅有一个零点;有两个零点且均比1大;(2)若函数有4个零点,求实数a

5、的取值范围问题六:含参函数分类讨论及范围界定问题11.已知函数其中是自然对数的底数(1)证明:是上的偶函数;(2)若关于x的不等式在上恒成立,求实数m的取值范围.12. 已知,函数,.(1)指出的单调性(不要求证明); (2)若有求的值;(3)若,求使不等式恒成立的t的取值范围.参考答案1. 解:(1),又 . (2)当时,则,此时,满足题意;当时,由,得 . 所以或,即,从而实数的取值范围为.2. 解:(1)由已知得Ax|1x3,Bx|log2x1x|x2,所以ABx|2x3,(RB)Ax|x2x|1x3x|x3(2) 当a1时,此时C,故CA;当a1时,此时, 若CA,则1a3.综合,可得

6、a的取值范围是(,33. 解:(1)当0x10时,f(x)0.1x22.6x430.1(x13)259.9,故f(x)在0x10时递增,最大值为f(10)0.1(1013)259.959.当1016时,f(x)为减函数,且f(x)59.因此,开讲10分钟后,学生达到最强接受能力(为59),能维持6分钟时间(2) f(5)0.1(513)259.953.5,f(20)3201074753.5,故开讲5分钟时学生的接受能力比开讲20分钟时要强一些(3)当016时,令f(x)55,解得x17.因此学生达到(含超过)55的接受能力的时间为17611600,且x400,600,该单位每月成本支出不超过1

7、05 000元时,月处理量x的取值范围是x|400x600(2) f(x)x2300x80 000(x2600x90 000)35 000(x300)235 000,x400,600,(x300)235 0000,该单位不获利由二次函数性质得当x400时,f(x)取得最小值故f(x)min(400300)235 00040000. 国家至少需补贴40000元才能使该单位不亏损5. 解:(1)设g(x)ax(a0,a1),由g(3)8得a2,故g(x)2x,由题意f(x),因为f(x)是R上的奇函数,所以f(0)0,得n1.所以f(x),又由f(1)f(1)知m1,所以f(x).(2)f(x)是

8、R上的单调减函数证明:设x1R,x2R且x1x2,因为y2x为R上的单调增函数且x1x2,故20,120, 故f(x1)f(x2)0,所以f(x)是R上的单调减函数6.(1)若f(x)为R上的奇函数,则f(0)=0,解得a=1,验证如下:当a=1时, ,所以,即f(x)为奇函数(2) 为R上的单调递增函数,证明过程如下:任取且,则,因为,所以,所以,f(x1)f(x2)0, 即f(x)为R上的增函数;(3) 此时,不等式,可化为:,又为R上的增函数,x ,解得,,7. (1)在f(x)f(y)f(xy)中,令x2,y1,代入得:f(2)f(1)f(1),所以f(2)2f(1)4.(2) f(x

9、)在(3,3)上单调递减证明如下:设3x1x23,则x1x20,即f(x1)f(x2),所以f(x)在(3,3)上单调递减(3)由g(x)0得f(x1)f(32x)0,所以f(x1)f(32x) 又f(x)为奇函数,所以f(x1)f(2x3),又f(x)在(3,3)上单调递减,所以解得0x2,故不等式g(x)0的解集是(0,2 8. 解:(1) 令xy0,则f(0)f(0)f(0), f(0)0.(2) 令yx,得f(0)f(x)f(x)0, f(x)f(x),故函数f(x)是R上的奇函数(3) 任取x1,x2R,x10.f(x2)f(x1)f(x2x1x1)f(x1)f(x2x1)f(x1)

10、f(x1)f(x2x1)0,f(x1) f(x2)故f(x)是R上的增函数f 1, f f ff2, f(x)f(2x)fx(2x)f(2x2)f .又由yf(x)是定义在R上的增函数,得2x2,解之得x.故x.9.解析: 10. 解:(1)有且仅有一个零点方程有两个相等实根0,即4m24(3m4)0,即m23m40,m4或m1.设f(x)的两个零点分别为,则2m,3m4.由题意,知5m1.故m的取值范围为(5,1)(2) 令f(x)0,得|4xx2|a0,则|4xx2|a.令g(x)|4xx2|,h(x)a.分别作出g(x),h(x)的图象 由图象可知,当0a4, 即-4a 0时,g(x)与h(x)的图象有4个交点.11.解:(1),有,是上的偶函数(2)由题意,即,即对恒成立令,则对任意恒成立,当且仅当时等号成立12. 解:(1)由题意有: 当时,递减 当时,递减 当且时,是减函数 (2) 设 则 来源:学|科|网Z|X|X|K 定义域为,关于原点对称。 即为定义域为的奇函数 则 又为上奇函数 (3)由(2)知为上奇函数且在上为减函数 由 有 即: 恒成立 综上可知:t的取值范围是 范文.范例.指导.参考

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服