1、圆的总结一 集合:圆:圆可以看作是到定点的距离等于定长的点的集合;圆的外部:可以看作是到定点的距离大于定长的点的集合;圆的内部:可以看作是到定点的距离小于定长的点的集合二 轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线三 位置关系:1点与圆的位置关系:点在圆内 dr 点A在圆外2 直线与圆的位置关系
2、:直线与圆相离 dr 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 dR+r外切(图2) 有一个交点 d=R+r相交(图3) 有两个交点 R-rdR+r内切(图4) 有一个交点 d=R-r内含(图5) 无交点 dR-r四 垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: AB是直径 A
3、BCD CE=DE 推论2:圆的两条平行弦所夹的弧相等。 即:在O中,ABCD五 圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论也即:AOB=DOE AB=DE OC=OF 六 圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半即:AOB和ACB是 所对的圆心角和圆周角 AOB=2ACB圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在O中,C、D都是所对的圆周角 C=D推论2:半圆或直径所对的圆周角
4、是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在O中,AB是直径 或C=90 C=90 AB是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形即:在ABC中,OC=OA=OB ABC是直角三角形或C=90注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。七 圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在O中,四边形ABCD是内接四边形 C+BAD=180 B+D=180 DAE=C八 切线的性质与判定定理(1)判定定理:过半径外端且垂直于半径的直线是切线 两个条件:过半径外端且垂直半径
5、,二者缺一不可 即:MNOA且MN过半径OA外端 MN是O的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点 推论2:过切点垂直于切线的直线必过圆心以上三个定理及推论也称二推一定理:即:过圆心过切点垂直切线中知道其中两个条件推出最后一个条件 MN是切线 MNOA切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:PA、PB是的两条切线 PA=PB PO平分BPA九 圆内正多边形的计算(1)正三角形 在O中 ABC是正三角形,有关计算在RtBOD中进行,OD:BD:OB=(2)正四边形同理,四边形的有关计算
6、在RtOAE中进行,OE:AE:OA=(3)正六边形同理,六边形的有关计算在RtOAB中进行,AB:OB:OA= 十、圆的有关概念 1、三角形的外接圆、外心。 用到:线段的垂直平分线及性质 2、三角形的内切圆、内心。 用到:角的平分线及性质 3、圆的对称性。 十一、圆的有关线的长和面积。 1、圆的周长、弧长 C=2r, l= 2、圆的面积、扇形面积、圆锥的侧面积和全面积 S圆=r2 , S扇形= S圆锥= 3、求面积的方法 直接法由面积公式直接得到 间接法即:割补法(和差法)进行等量代换 十二、侧面展开图:圆柱侧面展开图是 形,它的长是底面的 ,高是这个圆柱的 ;圆锥侧面展开图是 形,它的半径
7、是这个圆锥的 ,它的弧长是这个圆锥的底面的 。十三、正多边形计算的解题思路:正多边形等腰三角形直角三角形。可将正多边形的中心与一边组成等腰三角形,再用解直角三角形的知识进行求解。圆一、精心选一选,相信自己的判断!(每小题4分,共40分)1.如图,把自行车的两个车轮看成同一平面内的两个圆,则它们的位置关系是( )A.外离 B.外切 C.相交 D.内切2.如图,在O中,ABC=50,则AOC等于( )第4题ABOCDA50B80C90D100ABOC 第1题图第2题图第3题图3.如图,AB是O的直径,ABC=30,则BAC =( )A90 B60 C45 D30( )4. 如图,O的直径CDAB,
8、AOC=50,则CDB大小为 ( )A25 B30 C40 D505.已知O的直径为12cm,圆心到直线L的距离为6cm,则直线L与O的公共点的个数为( )A2B1C0D不确定12题AHBOC6.已知O1与O2的半径分别为3cm和7cm,两圆的圆心距O1O2 =10cm,则两圆的位置关系是( ) A外切B内切C相交D相离7.下列命题错误的是( )A经过不在同一直线上的三个点一定可以作圆B三角形的外心到三角形各顶点的距离相等C平分弦的直径垂直于弦,并且平分弦所对的两条弧D经过切点且垂直于切线的直线必经过圆心8.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A与x轴相离、与y轴
9、相切 B与x轴、y轴都相离C与x轴相切、与y轴相离 D与x轴、y轴都相切9已知两圆的半径R、r分别为方程的两根,两圆的圆心距为1,两圆的位置关系是( ) A外离 B内切 C相交 D外切10.同圆的内接正方形和外切正方形的周长之比为( ) A1B21C12D111.在RtABC中,C=90,AC=12,BC=5,将ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A25 B65 C90 D13012.如图,RtABC中,ACB=90,CAB=30,BC=2,O、H分别为边AB、AC的中点,将ABC绕点B顺时针旋转120到A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴
10、影部分面积)为( )AB+C D+二、细心填一填,试自己的身手!(本大题共6小题,每小题4分,共24分)13. 如图,、分别切于点、,点是上一点,且,则_度第18题图图17题图第13题图图14. 在O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,则O的半径为_ . 15.已知在O中,半径r=13,弦ABCD,且AB=24,CD=10,则AB与CD的距离为_.16.一个定滑轮起重装置的滑轮的半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O按逆时针方向旋转的角度为_ (假设绳索与滑轮之间没有滑动) 17.如图,在边长为3cm的正方形中,P与Q相外切,且P分别与DA、DC边相切
11、,Q分别与BA、BC边相切,则圆心距PQ为_18.如图,O的半径为3cm,B为O外一点,OB交O于点A,AB=OA,动点P从点A出发,以cm/s的速度在O上按逆时针方向运动一周回到点A立即停止当点P运动的时间为_s时,BP与O相切三、用心做一做,显显自己的能力!(本大题共7小题,满分66分)19.(本题满分8分)如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少?20.(本题满分8分)如图,PA,PB是O的切线,点A,B为切点,AC是O的直径,ACB=70求P的度数21.(本题满分8分)如图,线段AB经过圆心O,交O于
12、点A、C,点D在O上,连接AD、BD,A=B=30,BD是O的切线吗?请说明理由22.如图所示,是O的一条弦,垂足为,交O于点,点在O上EBDCAO(1)若,求的度数;(2)若,求的长(10分)23.如图,、是O的两条弦,延长、交于点,连结、交于点,求的度数(8分)ABPDCOEBACDEGOF第24题图24. (12分)如图,在ABC中,AB=AC,D是BC中点,AE平分BAD交BC于点E,点O是AB上一点,O过A、E两点, 交AD于点G,交AB于点F(1)求证:BC与O相切;(2)当BAC=120时,求EFG的度数25.(本题满分12分)已知:如图ABC内接于O,OHAC于H,过A点的切线
13、与OC的延长线交于点D,B=30,OH=5请求出:OADBCH(1)AOC的度数;(2)劣弧AC的长(结果保留);(3)线段AD的长(结果保留根号).26.(本题满分12分)如图,在平面直角坐标系中,M与x轴交于A、B两点,AC是M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为(0,),直线CD的函数解析式为y=x5求点D的坐标和BC的长;求点C的坐标和M的半径;求证:CD是M的切线初中数学圆知识点总结1、圆是定点的距离等于定长的点的集合2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等5、到定点的距离等于
14、定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9、定理不在同一直线上的三点确定一个圆。10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧11、推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧12、推论2:圆的两条平行弦所夹的弧相等13、圆是以圆心为对称中心的中心对称图形
15、14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等16、定理:一条弧所对的圆周角等于它所对的圆心角的一半17、推论:1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等18、推论:2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径19、推论:3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形20、定理: 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角21、直线L和O相交 dr直
16、线L和O相切 d=r直线L和O相离 dr22、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线23、切线的性质定理圆的切线垂直于经过切点的半径24、推论1 经过圆心且垂直于切线的直线必经过切点25、推论2 经过切点且垂直于切线的直线必经过圆心26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角27、圆的外切四边形的两组对边的和相等28、弦切角定理:弦切角等于它所夹的弧对的圆周角29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等31、推论:如果弦与直径垂直相交,
17、那么弦的一半是它分直径所成的两条线段的比例中项32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34、如果两个圆相切,那么切点一定在连心线上35、两圆外离 dR+r两圆外切 d=R+r两圆相交 R-rdR+r(Rr)两圆内切 d=R-r(Rr)两圆内含 dR-r(Rr)36、定理:相交两圆的连心线垂直平分两圆的公共弦37、定理:把圆分成n(n3):依次连结各分点所得的多边形是这个圆的内接正n边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形38、定理: 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆39、正n边形的每个内角都等于(n-2)180n40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形41、正n边形的面积Sn=pnrn2 p表示正n边形的周长42、正三角形面积3a4 a表示边长43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k (n-2)180n=360化为(n-2)(k-2)=444、弧长计算公式:L=n兀R18045、扇形面积公式:S扇形=n兀R2360=LR246、内公切线长= d-(R-r) 外公切线长= d-(R+r)10