资源描述
2 012年全国中考数学分类解析汇编
专题12:几何三大变换问题之旋转
一、选择题
1. (2012广东佛山3分)如图,把一个斜边长为2且含有300角的直角三角板ABC绕直角顶点C顺时针旋转900到△A1B1C,则在旋转过程中这个三角板扫过的图形的面积是【 】
A.π B. C. D.
【答案】D。
【考点】旋转的性质,勾股定理,等边三角形的性质,扇形面积。
【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA1、 BCD和△ACD 计算即可:
在△ABC中,∠ACB=90°,∠BAC=30°,AB=2,
∴BC=AB=1,∠B=90°-∠BAC=60°。∴。
∴。
设点B扫过的路线与AB的交点为D,连接CD,
∵BC=DC,∴△BCD是等边三角形。∴BD=CD=1。
∴点D是AB的中点。
∴S。
∴
故选D。
2. (2012广东汕头4分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是【 】
A.110° B.80° C.40° D.30°
【答案】B。
【考点】旋转的性质,三角形内角和定理。
【分析】根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,
∵∠A=40°,∴∠A′=40°。
∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°。∴∠ACB=30°。
∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,
∴∠BCA′=30°+50°=80°,故选B。
3. (2012福建龙岩4分)如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD 绕AB所在直线旋转一
周所得圆柱的侧面积为【 】
A. B. C. D.2
【答案】B。
【考点】矩形的性质,旋转的性质。
【分析】把矩形ABCD 绕AB所在直线旋转一周所得圆柱是以BC=2为底面半径,AB=1为高。所以,它
的侧面积为。故选B。
4. (2012湖北十堰3分)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④;⑤.其中正确的结论是【 】
A.①②③⑤ B.①②③④ C.①②③④⑤ D.①②③
【答案】A。
【考点】旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理的逆定理。
【分析】∵正△ABC,∴AB=CB,∠ABC=600。
∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,∴BO=BO′,∠O′AO=600。
∴∠O′BA=600-∠ABO=∠OBA。∴△BO′A≌△BOC。
∴△BO′A可以由△BOC绕点B逆时针旋转60°得到。故结论①正确。
连接OO′,
∵BO=BO′,∠O′AO=600,∴△OBO′是等边三角形。∴OO′=OB=4。故结论②正确。
∵在△AOO′中,三边长为O′A=OC=5,OO′=OB=4,OA=3,是一组勾股数,
∴△AOO′是直角三角形。
∴∠AOB=∠AOO′+∠O′OB =900+600=150°。故结论③正确。
。故结论④错误。
如图所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,
点O旋转至O″点.
易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的
直角三角形。
则。
故结论⑤正确。
综上所述,正确的结论为:①②③⑤。故选A。
5. (2012湖南娄底3分)如图,矩形绕它的一条边MN所在的直线旋转一周形成的几何体是【 】
A. B. C. D.
【答案】C。
【考点】点、线、面、体。
【分析】矩形绕一边所在的直线旋转一周得到的是圆柱。故选C。
6. (2012四川绵阳3分)如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=【 】。
A.1: B.1:2 C.:2 D.1:
【答案】B。
【考点】旋转的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理。
【分析】如图,连接AP,
∵BP绕点B顺时针旋转90°到BP′,
∴BP=BP′,∠ABP+∠ABP′=90°。
又∵△ABC是等腰直角三角形,
∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′。
在△ABP和△CBP′中,∵ BP=BP′,∠ABP=∠CBP′,AB=BC ,∴△ABP≌△CBP′(SAS)。
∴AP=P′C。
∵P′A:P′C=1:3,∴AP=3P′A。
连接PP′,则△PBP′是等腰直角三角形。∴∠BP′P=45°,PP′= 2 PB。
∵∠AP′B=135°,∴∠AP′P=135°-45°=90°,∴△APP′是直角三角形。
设P′A=x,则AP=3x,
在Rt△APP′中,。
在Rt△APP′中,。
∴,解得PB=2x。∴P′A:PB=x:2x=1:2。 故选B。
7. (2012贵州黔东南4分)点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于【 】
A.75° B.60° C.45° D.30°
【答案】C。
【考点】正方形的性质,旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质。
【分析】过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,
∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°。∴∠ADP+∠APD=90°。
由旋转可得:PD=PE,∠DPE=90°,∴∠APD+∠EPF=90°。
∴∠ADP=∠EPF。
在△APD和△FEP中,∵∠ADP=∠EPF,∠A=∠F,PD=PE,
∴△APD≌△FEP(AAS)。∴AP=EF,AD=PF。
又∵AD=AB,∴PF=AB,即AP+PB=PB+BF。∴AP=BF。∴BF=EF
又∵∠F=90°,∴△BEF为等腰直角三角形。∴∠EBF=45°。
又∵∠CBF=90°,∴∠CBE=45°。故选C。
8. (2012广西北海3分)如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置
出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了:【 】
A.2周 B.3周 C.4周 D.5周
【答案】C。
【考点】等边三角形的性质,直线与圆的位置关系。
【分析】该圆运动可分为两部分:在三角形的三边运动以及绕过三角形的三个角,分别计算即可得到圆的自传周数:
⊙O在三边运动时自转周数:6π÷2π =3:
⊙O绕过三角形外角时,共自转了三角形外角和的度数:360°,即一周。
∴⊙O自转了3+1=4周。故选C。
二、填空题
1. (2012福建厦门4分)如图,已知∠ABC=90°,AB=πr,BC=,半径为r的⊙O从点A出发,沿A→B→C方向滚动到点C时停止.请你根据题意,在图上画出圆心O运动路径的示意图;圆心O运动的路程是 ▲ .
【答案】2πr。
【考点】作图题,弧长的计算。
【分析】根据题意画出图形,将运动路径分为三部分:OO1,O1O2 ,O2O3,分别计算出各部分的长再相加即可:
圆心O运动路径如图:
∵OO1=AB=πr;O1O2 =;O2O3=BC= ,
∴圆心O运动的路程是πr++ =2πr。
2. (2012四川南充3分)如图,四边形ABCD中,∠BAD=∠BCD=900,AB=AD,若四边形ABCD的面积是24cm2.则AC长是 ▲ cm.
【答案】4。
【考点】等腰直角三角形的性质,旋转的性质,勾股定理。
【分析】如图,将△ADC旋转至△ABE处,则△AEC的面积和四边形ABCD的面积一样多为24cm2,,这时三角形△AEC为等腰直角三角形,作边EC上的高AF,则AF=EC=FC,
∴ S△AEC= AF·EC=AF2=24 。∴AF2=24。
∴AC2=2AF2=48 AC=4。
3. (2012山东烟台3分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为 ▲ .
【答案】。
【考点】扇形面积的计算,旋转的性质。
【分析】先根据Rt△ABC中,∠C=90°,∠A=30°,AB=2求出BC及AC的长,再根据线段BC扫过的区域面积为:S阴影=AB扫过的扇形面积+△AB′C′面积﹣AC扫过的扇形面积﹣△ABC面积
=AB扫过的扇形面积﹣AC扫过的扇形面积。
∵Rt△ABC中,∠C=90°,∠A=30°,AB=2,∴。
∵B,A,C′三点共线,∴∠BAB′=150°。
∴S阴影= AB扫过的扇形面积+△ABC面积﹣BC扫过的扇形面积
。
4. (2012广西河池3分)如图,在平面直角坐标系中,矩形OEFG的顶点F的坐标为(4,2),将矩形
OEFG绕点O逆时针旋转,使点F落在y轴上,得到矩形OMNP,OM与GF相交于点A.若经过点A的
反比例函数的图象交EF于点B,则点B的坐标为 ▲ .
【答案】(4,)。
【考点】反比例函数综合题,矩形的性质,旋转的性质,相似三角形的判定和性质,曲线上点的坐标与方
程的关系。
【分析】∵矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,
∴∠P=∠POM=∠OGF=90°。∴∠PON+∠PNO=90°,∠GOA+∠PON=90°。∴∠PNO=∠GOA。
∴△OGA∽△NPO。
∵E点坐标为(4,0),G点坐标为(0,2),∴OE=4,OG=2。∴OP=OG=2,PN=GF=OE=4。
∵△OGA∽△NPO,∴OG:NP=GA:OP,即2:4=GA:2。∴GA=1。∴A点坐标为(1,2)。
把A(1,2)代入得k=1×2=2。∴过点A的反比例函数解析式为。
把x=4代入得。∴B点坐标为(4,)。
5. (2012广西钦州3分)如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A旋转90°后得到△AO′B′,则点B′的坐标是 ▲ .
【答案】(﹣1,﹣2)或(5,2)。
【考点】坐标与图形的旋转变化。
【分析】当y=0时,,解得x=2;当x=0时,y=3。
∴点A(2,0),B(0,3)。∴OA=2,OB=3,
根据旋转不变性可得△AOB≌△AO′B′,
∴AO′=OA=2,O′B′=OB=3,
①如果△AOB是逆时针旋转90°,则点B′(﹣1,﹣2),
②如果△AOB是顺时针旋转90°,则点B′(5,2)。
综上,点B′的坐标是(﹣1,﹣2)或(5,2)。
6. (2012江西南昌3分)如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是 ▲ .
【答案】15°或165°。
【考点】正方形和正三角形的性质,旋转的性质,全等三角形的判定和性质。
【分析】正三角形AEF可以在正方形的内部也可以在正方形的外部,所以要分两种情况分别求解:
①当正三角形AEF在正方形ABCD的内部时,如图1,
∵正方形ABCD与正三角形AEF的顶点A重合,
∴AB=AD,AE=AF。
∵当BE=DF时,在△ABE和△ADF中,AB=AD,BE=DF,AE=AF,
∴△ABE≌△ADF(SSS)。∴∠BAE=∠FAD。
∵∠EAF=60°,∴∠BAE+∠FAD=30°。∴∠BAE=∠FAD=15°。
②当正三角形AEF在正方形ABCD的外部,顺时针旋转小于1800时,如图2,
同上可得△ABE≌△ADF(SSS)。∴∠BAE=∠FAD。
∵∠EAF=60°,∴∠BAF=∠DAE。
∵900+600+∠BAF+∠DAE=3600,∴∠BAF=∠DAE=105°。
∴∠BAE=∠FAD=165°。
③当正三角形AEF在正方形ABCD的外部,顺时针旋转大于1800时,如图3,
同上可得△ABE≌△ADF(SSS)。∴∠BAE=∠FAD。
∵∠EAF=60°,∠BAE=90°,
∴90°+∠DAE=60°+∠DAE,这是不可能的。
∴此时不存在BE=DF的情况。
综上所述,在旋转过程中,当BE=DF时,∠BAE的大小可以是15°或165°。
7. (2012吉林省3分)如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时
针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是_ ▲____.
【答案】19。
【考点】旋转的性质,等边三角形的判定和性质。
【分析】∵△BCD绕点B逆时针旋转60°得到△BAE,
∴根据旋转前、后的图形全等的旋转性质,得,CD= AE,BD=BE。
∵△ABC是等边三角形,BC=10,∴AC= BC=10。∴AE+AD=AC=10。
又∵旋转角∠DBE=600,∴△DBE是等边三角形。∴DE=BD=9。
∴△AED的周长=DE+AE+AD=9+10=19。
三、解答题
1. (2012北京市7分)在中,,M是AC的中点,P是线段BM上的动点,
将线段PA绕点P顺时针旋转得到线段PQ。
(1) 若且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,
并写出∠CDB的度数;
(2) 在图2中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB的
大小(用含的代数式表示),并加以证明;
(3) 对于适当大小的,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得
线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出的范围。
【答案】解:(1)补全图形如下:
∠CDB=30°。
(2)作线段CQ的延长线交射线BM于点D,连接PC,AD,
∵AB=BC,M是AC的中点,∴BM⊥AC。
∴AD=CD,AP=PC,PD=PD。
在△APD与△CPD中,∵AD=CD, PD=PD, PA=PC
∴△APD≌△CPD(SSS)。
∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD。
又∵PQ=PA,∴PQ=PC,∠ADC=2∠CDB,∠PQC=∠PCD=∠PAD。
∴∠PAD+∠PQD=∠PQC+∠PQD=180°。
∴∠APQ+∠ADC=360°-(∠PAD+∠PQD)=180°。
∴∠ADC=180°-∠APQ=180°-2α,即2∠CDB=180°-2α。
∴∠CDB=90°-α。
(3)45°<α<60°。
【考点】旋转的性质,等边三角形的判定和性质,三角形内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,。
【分析】(1)利用图形旋转的性质以及等边三角形的判定得出△CMQ是等边三角形,即可得出答案:
∵BA=BC,∠BAC=60°,M是AC的中点,∴BM⊥AC,AM=AC。
∵将线段PA绕点P顺时针旋转2α得到线段PQ,∴AM=MQ,∠AMQ=120°。
∴CM=MQ,∠CMQ=60°。∴△CMQ是等边三角形。
∴∠ACQ=60°。∴∠CDB=30°。
(2)首先由已知得出△APD≌△CPD,从而得出∠PAD+∠PQD=∠PQC+∠PQD=180°,即可求出。
(3)由(2)得出∠CDB=90°-α,且PQ=QD,
∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°-2α。
∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD。
∴2α>180°-2α>α,∴45°<α<60°。
2. (2012福建南平12分)在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(m,1)(m>0),将此矩形绕O点逆时针旋转90°,得到矩形OA′B′C′.
(1)写出点A、A′、C′的坐标;
(2)设过点A、A′、C′的抛物线解析式为y=ax2+bx+c,求此抛物线的解析式;(a、b、c可用含m的式子表示)
(3)试探究:当m的值改变时,点B关于点O的对称点D是否可能落在(2)中的抛物线上?若能,求出此时m的值.
【答案】解:(1)∵四边形ABCD是矩形,点B的坐标为(m,1)(m>0),∴A(m,0),C(0,1)。
∵矩形OA′B′C′由矩形OABC旋转90°而成,∴A′(0,m),C′(-1,0)。(2)设过点A、A′、C′的抛物线解析式为y=ax2+bx+c,
∵A(m,0),A′(0,m),C′(-1,0),
∴,解得。
∴此抛物线的解析式为:y=-x2+(m-1)x+m。
(3)∵点B与点D关于原点对称,B(m,1),
∴点D的坐标为:(-m,-1),
假设点D(-m,-1)在(2)中的抛物线上,
∴0=-(-m)2+(m-1)×(-m)+m=1,即2m2-2m+1=0,
∵△=(-2)2-4×2×2=-4<0,∴此方程无解。
∴点D不在(2)中的抛物线上。
【考点】二次函数综合题,矩形的性质,旋转的性质,待定系数法,曲线上点的坐标与方程的关系,解方程组,关于原点对称的点的坐标特征,一元二次方程根与系数的关系。
【分析】(1)先根据四边形ABCD是矩形,点B的坐标为(m,1)(m>0),求出点A、C的坐标,再根据图形旋转的性质求出A′、C′的坐标即可。
(2)设过点A、A′、C′的抛物线解析式为y=ax2+bx+c,把A、A′、C′三点的坐标代入即可得出abc的值,进而得出其抛物线的解析式。
(3)根据关于原点对称的点的坐标特点用m表示出D点坐标,把D点坐标代入抛物线的解析式看是否符合即可。
3. (2012湖北天门、仙桃、潜江、江汉油田10分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.
(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
【答案】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE。
(2)△BDF∽△CED∽△DEF,证明如下:
∵∠B+∠BDF+∠BFD=180°,∠EDF+∠BDF+∠CDE=180°,
又∵∠EDF=∠B,∴∠BFD=∠CDE。
∵AB=AC,∴∠B=∠C。∴△BDF∽△CED。∴。
∵BD=CD,∴,即。
又∵∠C=∠EDF,∴△CED∽△DEF。∴△BDF∽△CED∽△DEF。
(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.
∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=6。
在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣62,
∴AD=8。
∴S△ABC=•BC•AD=×12×8=48,
S△DEF=S△ABC=×48=12。
又∵•AD•BD=•AB•DH,∴。
∵△BDF∽△DEF,∴∠DFB=∠EFD。
∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF。
又∵DF=DF,∴△DHF≌△DGF(AAS)。∴DH=DG=。
∵S△DEF=·EF·DG=·EF·=12,∴EF=5。
【考点】旋转的性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,全等三角形的判定和性质。
【分析】(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE:
∵AB=AC,D为BC的中点,∴AD⊥BC,∠B=∠C,∠BAD=∠CAD。
又∵∠MDN=∠B,∴△ADE∽ABD。
同理可得:△ADE∽△ACD。
∵∠MDN=∠C=∠B,∠B+∠BAD=90°,∠ADE+∠EDC=90°,∠B=∠MDN,
∴∠BAD=∠EDC。
∵∠B=∠C,∴△ABD∽△DCE。∴△ADE∽△DCE。
(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF。
(3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可。
4. (2012江苏淮安12分)如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0),将矩形OABC绕点O按顺时针方向旋转1350,得到矩形EFGH(点E与O重合).
(1)若GH交y轴于点M,则∠FOM= ,OM=
(2)矩形EFGH沿y轴向上平移t个单位。
①直线GH与x轴交于点D,若AD∥BO,求t的值;
②若矩形EFHG与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤时,S与t之间的函数关系式。
【答案】解:(1)450;。
(2)①如图1,设直线HG与y轴交于点I。
∵四边形OABC是矩形,∴AB∥DO,AB=OC。
∵C(2,0),∴AB=OC=2。
又∵AD∥BO,
∴四边形ABOD是平行四边形。∴DO=AB=2。
由(1)易得,△DOI是等腰直角三角形,∴OI=OD=2。
∴t=IM=OM-OI=-2。
②如图2,过点F,G分别作x轴,y轴的垂线,垂足为R,T,连接OC。则
由旋转的性质,得,OF=OA=4,∠FOR=450,
∴OR=RF=,F(,-)。
由旋转的性质和勾股定理,得OG=,
设TG=MT=x,则OT=OM+MT=。
在Rt△OTG中,由勾股定理,得,解得x=。
∴G(,-)。
∴用待定系数法求得直线FG的解析式为。
当x=2时,。
∴当t=时,就是GF平移到过点C时的位置(如图5)。
∴当0<t≤时,几个关键点如图3,4,5所示:
如图3 ,t=OE=OC=2,此时,矩形EFGH沿y轴向上平移过程中边EF经过点C;
如图4,t=OE=OM=,此时,矩形EFGH沿y轴向上平移过程中边HG经过点O;
如图5,t=OE=,此时,矩形EFGH沿y轴向上平移过程中边FG经过点C。
∴(I)当0<t≤2时,矩形EFHG与矩形OABC重叠部分的面积为△OCS的面积(如图6)。此时,OE=OS= t, ∴。
(II)当2<t≤时,矩形EFHG与矩形OABC重叠部分的面积为直角梯形OEPC的面积(如图7)。此时OE= t,,OC=2。
由E(0,t),∠FFO=450,用用待定系数法求得直线EP的解析式为。
当x=2时,。∴CP=。∴。
(III)当<t≤时,矩形EFHG与矩形OABC重叠部分的面积为五边形EQCUV的面积(如图8),它等于直角梯形EQCO的面积减去直角三角形VOU的的面积。
此时,OE= t,,OC=2,CQ= ,OU=OV= t-。
∴。
综上所述,当0<t≤时,S与t之间的函数关系式为
。
【考点】旋转的性质,矩形的性质,勾股定理,平移的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,待定系数法,直线上点的坐标与方程的关系。
【分析】(1)由旋转的性质,得∠AOF=1350,∴∠FOM=450。
由旋转的性质,得∠OHM=450,OH=OC=2,∴OM=。
(2)①由矩形的性质和已知AD∥BO,可得四边形ABOD是平行四边形,从而DO=AB=2。又由△DOI是等腰直角三角形可得OI=OD=2。从而由平移的性质可求得t=IM=OM-OI=-2。
②首先确定当0<t≤时,矩形EFGH沿y轴向上平移过程中关键点的位置,分0<t≤2,2<t≤,<t≤三种情况求出S与t之间的函数关系式。
5. (2012江苏宿迁12分)(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<∠ABC)。以点B为旋转中心,将△BEC按逆时针方向旋转∠ABC,得到△BE’A(点C与点A重合,点E到点E’处),连接DE’。求证:DE’=DE.
(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,
且满足∠DBE=∠ABC(0°<∠CBE<45°).求证:DE2=AD2+EC2.[来
:学#科#网]
【答案】证明:(1)∵△BE’A是△BEC按逆时针方向旋转∠ABC得到,
∴BE’=BE,∠E’BA=∠EBC。
∵∠DBE=∠ABC,∴∠ABD+∠EBC =∠ABC。
∴∠ABD+∠E’BA =∠ABC,即∠E’BD=∠ABC。∴∠E’BD=∠DBE。
在△E’BD和△EBD中,∵BE’=BE,∠E’BD=∠DBE,BD=BD,
∴△E’BD≌△EBD(SAS)。∴DE’=DE。
(2)以点B为旋转中心,将△BEC按逆时针方向旋转∠ABC=90°,得到△BE’A(点C与点A重合,点E到点E’处),连接DE’。
由(1)知DE’=DE。
由旋转的性质,知E’A=EC,∠E’ AB=∠ECB。
又∵BA=BC,∠ABC=90°,∴∠BAC=∠ACB=45°。
∴∠E’ AD=∠E’ AB+∠BAC=90°。
在Rt△DE’A中,DE’2=AD2+E’A2,∴DE2=AD2+EC2。
【考点】旋转的性质,等腰(直角)三角形的性质,全等三角形的判定和性质,勾股定理。
【分析】(1)由旋转的性质易得BE’=BE,∠E’BA=∠EBC,由已知∠DBE=∠ABC经等量代换可得
∠E’BD=∠DBE,从而可由SAS得△E’BD≌△EBD,得到DE’=DE。
(2)由(1)的启示,作如(1)的辅助图形,即可得到直角三角形DE’A,根据勾股定理即可证得结论。
6. (2012四川乐山12分)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF;
②当AB=4,AD=时,求线段BG的长.
【答案】解:(1)BD=CF成立。理由如下:
∵△ABC是等腰直角三角形,四边形ADEF是正方形,
∴AB=AC,AD=AF,∠BAC=∠DAF=90°。
∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,∴∠BAD=∠CAF。
在△BAD和△CAF中,∵AB=AC,∠BAD=∠CAF,
∴△BAD≌△CAF(SAS)。∴BD=CF。
(2)①证明:设BG交AC于点M.
∵△BAD≌△CAF(已证),∴∠ABM=∠GCM。
又∵∠BMA=∠CMG,∴△BMA∽△CMG。
∴∠BGC=∠BAC=90°。∴BD⊥CF。
②过点F作FN⊥AC于点N。
∵在正方形ADEF中,AD=DE=,
∴。
∴AN=FN=AE=1。
∵在等腰直角△ABC 中,AB=4,∴CN=AC﹣AN=3,。
∴在Rt△FCN中,。
在Rt△ABM中,。
∴AM=。
∴CM=AC﹣AM=4﹣,。
∵△BMA∽△CMG,∴,即,∴CG=。
∴在Rt△BGC中,。
【考点】等腰直角三角形和正方形的性质,全等三角形、相似三角形的判定和性质,旋转的性质,勾股定理。
【分析】(1)△ABC是等腰直角三角形,四边形ADEF是正方形,易证得△BAD≌△CAF,根据全等三角形的对应边相等,即可证得BD=CF。
(2)①由△BAD≌△CAF,可得∠ABM=∠GCM,又由对顶角相等,易证得△BMA∽△CMG,根据相似三角形的对应角相等,可得BGC=∠BAC=90°,即可证得BD⊥CF。
②首先过点F作FN⊥AC于点N,利用勾股定理即可求得AE,BC的长,继而求得AN,CN的长,又由等角的三角函数值相等,可求得AM=。然后利用△BMA∽△CMG,求得CG的长,再由勾股定理即可求得线段BG的长。
7. (2012四川广安10分)如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=,将△OAB绕着原点O逆时针旋转90°,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180°,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2.
(1)求抛物线的解析式.
(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标.
(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】解:(1)∵AB⊥x轴,AB=3,tan∠AOB=,∴OB=4。
∴B(﹣4,0),B1(0,﹣4),A2(3,0)。
∵抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2,
∴,解得。
∴抛物线的解析式为:。
(2)点P是第三象限内抛物线上的一点,
如图,过点P作PC⊥x轴于点C.
设点P的坐标为(m,n),
则m<0,n<0,。
∴PC=|n|=﹣,OC=|m|=﹣m,
BC=OB﹣OC=|﹣4|﹣|m|=4+m。
∴
∴当m=﹣2时,△PBB1的面积最大,这时,n=,即点P(﹣2,)。
(3)存在。
假设在第三象限的抛物线上存在点Q(x0,y0),使点Q到线段BB1的距离为。
如图,过点Q作QD⊥BB1于点D,设Q(xQ,yQ),
由(2)可知,此时△QBB1的面积可以表示为:
,
在Rt△OBB1中,。
∵,
∴,解得xQ=﹣1或xQ=﹣3。
当xQ=﹣1时,yQ=﹣4;当xQ=﹣3时,yQ=﹣2。
因此,在第三象限内,抛物线上存在点Q,使点Q到线段BB1的距离为,这样的点Q的坐标是(﹣1,﹣4)或(﹣3,﹣2)。
【考点】二次函数综合题,旋转的性质,锐角三角函数定义,待定系数法,曲线上点的坐标与方程的关系,二次函数的最值,勾股定理点到直线的距离。
【分析】(1)根据旋转的性质确定点B、B1、A2三点的坐标,利用待定系数法求得抛物线的解析式。
(2)求出△PBB1的面积表达式,这是一个关于P点横坐标的二次函数,利用二次函数求极值的方法求出△PBB1面积的最大值。
(3)引用(2)问中三角形面积表达式的结论,利用此表达式表示出△QBB1的面积,然后解一元二次方程求得Q点的坐标。
8. (2012四川德阳14分)在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.
⑴求经过点D、B、E的抛物线的解析式;
⑵将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交⑴中的抛
物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由.
⑶过⑵中的点F的直线交射线CB于点P,交⑴中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标.
【答案】解:(1)∵BE⊥DB交x轴于点E,OABC是正方形,∴∠DBC=EBA。
在△BCD与△BAE中,∵∠BCD=∠BAE=90°, BC=BA ,∠DBC=∠EBA ,
∴△BCD≌△BAE(ASA)。∴AE=CD。
∵OABC是正方形,OA=4,D是OC的中点,
∴A(4,0),B(4,4),C(0,4),D(0,2),∴E(6,0).
设过点D(0,2),B(4,4),E(6,0)的抛物线解析式为y=ax2+bx+c,则有:
,解得 。
∴经过点D、B、E的抛物线的解析式为:。
(2)结论OF=DG能成立.理由如下:
由题意,当∠DBE绕点B旋转一定的角度后,同理可证得△BCG≌△BAF,∴AF=CG。
∵xM=,∴。∴M()。
设直线MB的解析式为yMB=kx+b,
∵M(),B(4,4),
∴,解得。
∴yMB=x+6。∴G(0,6)。
∴CG=2,DG=4。∴AF=CG=2,OF=OA﹣AF=2,F(2,0)。
∵OF=2,DG=4,∴结论OF=DG成立。
(3)如图,△PFE为等腰三角形,可能有三种情况,分类讨论如下:
①若PF=FE。
∵FE=4,BC与OA平行线之间距离为4,
∴此时P点位于射线CB上。
∵F(2,0),∴P(2,4)。
此时直线FP⊥x轴。来]∴xQ=2。
∴,
∴Q1(2,)。
②若PF=PE。
如图所示,∵AF=AE=2,BA⊥FE,∴△BEF为等腰三角形。
∴此时点P、Q与点B重合。∴Q2(4,4)。
③若PE=EF。
∵FE=4,BC与OA平行线之间距离为4,∴此时P点位于射线CB上。
∵E(6,0),∴P(6,4)。
设直线yPF的解析式为yPF=kx+b,∵F(2,0),P(6,4),
∴,解得。∴yPF=x﹣2。
∵Q点既在直线PF上,也在抛物线上,
∴,化简得5x2﹣14x﹣48=0,
解得x1= ,x2=﹣2(不合题意,舍去)。∴xQ=2。
∴yQ=xQ﹣2=。∴Q3()。
综上所述,Q点的坐标为Q1(2,)或Q2(4,4)或Q3()。
【考点】二次函数综合题,正方形的性质,全等三角形的判定和性质,待定系数法,曲线上点的坐标与方程的关系,解一元二次方程和多元方程组,旋转的性质,等腰三角形的判定和性质。
【分析】(1)由正方形的性质和△BCD≌△BAE求得E点坐标,然后利用待定系数法求抛物线解析式。
(2)求出M点坐标,然后利用待定系数法求直线MB的解析式,令x=0,求得G点坐标,从而得到线段CG、DG的长度;由△BCG≌△BAF,可得AF=CG,从而求得OF的长度.比较OF与DG的长度,它们满足OF=DG的关系,所以结论成立;
(3)分PF=FE、PF=PE和PE=EF三种
展开阅读全文