资源描述
2 012年全国中考数学分类解析汇编
专题9:由运动产生的线段和差问题
一、选择题
1. (2012湖北黄石3分)如图所示,已知A,B为反比例函数图像上的两点,动
点P在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是【 】
A. B. C. D.
【答案】D。
【考点】反比例函数综合题,待定系数法,曲线上点的坐标与方程的关系,三角形三边关系。
【分析】∵把A,B分别代入反比例函数 得:y1=2,y2= ,
∴A( ,2),B(2, )。
∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,
∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,
即此时线段AP与线段BP之差达到最大。
设直线AB的解析式是y=kx+b,把A、B的坐标代入得:
,解得:。∴直线AB的解析式是。
当y=0时,x= ,即P( ,0)。故选D。
二、填空题
三、解答题
1.(2012北京市8分)在平面直角坐标系xoy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,
给出如下定义:
若∣x1-x2∣≥∣y1-y2∣,则点P1与点P2的“非常距离”为∣x1-x2∣;
若∣x1-x2∣<∣y1-y2∣,则点P1与点P2的“非常距离”为∣y1-y2∣.
例如:点P1(1,2),点P2(3,5),因为∣1-3∣<∣2-5∣,所以点P1与点P2的“非常距离”为
∣2-5∣=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x
轴的直线P2Q的交点)。
(1)已知点,B为y轴上的一个动点,
①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;
②直接写出点A与点B的“非常距离”的最小值;
(2)已知C是直线上的一个动点,
①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;
②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最
小值及相应的点E和点C的坐标。
【答案】解:(1)①(0,-2)或(0,2)。
②。
(2)①设C坐标为,如图,过点C作CP⊥x轴于点P,作CQ⊥y轴于点Q。
由“非常距离”的定义知,当OP=DQ时,点C与点D的“非常距离”最小,
∴。
两边平方并整理,得,解得,或(大于,舍去)。
∴点C与点D的“非常距离”的最小值距离为,此时。
②设直线与x轴和y轴交于点A,B,过点O作直线的垂线交直线于点C,交圆于点E,过点C作CP⊥x轴于点P,作CQ⊥y轴于点Q,过点E作EM⊥x轴于点M,作EN⊥y轴于点N。
易得,OA=4,OB=3,AB=5。
由△OAB∽△MEM,OE=1,得OM=,ON=。∴。
设C坐标为
由“非常距离”的定义知,当MP=NQ时,点C与点E的“非常距离”最小,
∴。
两边平方并整理,得,
解得,或(大于,舍去)。
∴点C与点E的“非常距离”的最小值距离为1,此时,。
【考点】新定义,直线上点的坐标与方程的关系,直线和圆的性质,解一元二次方程,勾股定理,相似三角形的和性质。
【分析】(1)根据“非常距离”的定义可直接求出。
(2)①解题关键是,过C点向x、y轴作垂线,当CP和CQ长度相等的时候“非常距离”最短,理由是,如果向下(如左图)或向上(如右图)移动C点到达C’点,其与点D的“非常距离”都会增大。故而C、D为正方形相对的两个顶点时有最小的非常距离。
②同①,同时理解当OC垂直于直线时,点C与点E的“非常距离”最小。
2. (2012广西南宁10分)已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y).
(1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;
(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;
(3)如图2,当点B的坐标为(-1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.
【答案】解:(1)如图1,过点A作AE⊥x轴于点E.
在△BCD与△CAE中,
∵∠BCD=∠CAE=90°-∠ACE,∠BDC=∠CEA=90°,
∴△BCD∽△CAE,∴。
∵A(3,4),B(-1,y),C(x,0)且-1<x<3,
∴。
∴y与x之间的函数关系式为(-1<x<3)。
(2)y没有最大值。理由如下:
∵,
又∵-1<x<3,∴y没有最大值。
(3)如图2,过点A作x轴的平行线,并且在这条平行线上截取线段AA′,使AA′=1,作点B关于x轴的对称点B′,连接A′B′,交x轴于点E,在x轴上截取线段EF=1,则此时四边形ABEF的周长最小。
∵A(3,4),∴A′(2,4)。
∵B(-1,1),∴B′(-1,-1)。
设直线A′B′的解析式为y=kx+b,
则,解得。
∴直线A′B′的解析式为。
当y=0时,,解得。
∴线段EF平移至如图2所示位置时,四边形ABEF的周长最小,
此时点E的坐标为(,0)。
【考点】一次函数综合题,待定系数法,曲线上点的坐标与方程的关系,相似三角形的判定和性质,二次函数的最值,轴对称的性质,三角形三边关系。
【分析】(1)过点A作AE⊥x轴于点E,先证明△BCD∽△CAE,再根据相似三角形对应边成比例即可
求出y与x之间的函数关系式。
(2)先运用配方法将写成顶点式,再根据自变量x的取值范围即可求解。
(3)欲使四边形ABEF的周长最小,由于线段AB与EF是定长,所以只需BE+AF最小.为此,
先确定点E、F的位置:过点A作x轴的平行线,并且在这条平行线上截取线段AA′,使AA′=1,作点B关于x轴的对称点B′,连接A′B′,交x轴于点E,在x轴上截取线段EF=1,则点E、F的位置确定.再根据待定系数法求出直线A′B′的解析式,然后令y=0,即可求出点E的横坐标,从而得出点E的坐标。
3. (2012山东滨州10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.
【答案】解:(1)把A(﹣2,﹣4),O(0,0),B(2,0)三点的坐标代入y=ax2+bx+c中,得
,解这个方程组,得。
∴抛物线的解析式为y=﹣x2+x。
(2)由y=﹣x2+x=﹣(x﹣1)2+,可得
抛物线的对称轴为x=1,并且对称轴垂直平分线段OB。
∴OM=BM。∴OM+AM=BM+AM。
连接AB交直线x=1于M点,则此时OM+AM最小。
过点A作AN⊥x轴于点N,
在Rt△ABN中,,
因此OM+AM最小值为。
【考点】二次函数综合题,曲线上点的坐标与方程的关系,解方程组,二次函数的性质,线段中垂线的性质,三角形三边关系,勾股定理。
【分析】(1)已知抛物线上不同的三点坐标,利用待定系数法可求出该抛物线的解析。
(2)根据O、B点的坐标发现:抛物线上,O、B两点正好关于抛物线的对称轴对称,那么只需连接A、B,直线AB和抛物线对称轴的交点即为符合要求的M点,而AM+OM的最小值正好是AB的长。
对x=1上其它任一点M′,根据三角形两边之和大于第三边的性质,总有:
O M′+A M′= B M′+A M′>AB=OM+AM,
即OM+AM为最小值。
4. (2012湖北恩施8分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
【答案】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,
,解得。∴抛物线的函数关系式为。
设直线AC的函数关系式为y=kx+n,由直线AC过点A(﹣1,0)及C(2,3)得
,解得。
∴直线AC的函数关系式为y=x+1。
(2)作N点关于直线x=3的对称点N′,
令x=0,得y=3,即N(0,3)。
∴N′(6, 3)
由得
D(1,4)。
设直线DN′的函数关系式为y=sx+t,则
,解得。
∴故直线DN′的函数关系式为。
根据轴对称的性质和三角形三边关系,知当M(3,m)在直线DN′上时,MN+MD的值最小,
∴。
∴使MN+MD的值最小时m的值为。
(3)由(1)、(2)得D(1,4),B(1,2),
①当BD为平行四边形对角线时,由B、C、D、N的坐标知,四边形BCDN是平行四边形,此时,点E与点C重合,即E(2,3)。
②当BD为平行四边形边时,
∵点E在直线AC上,∴设E(x,x+1),则F(x,)。
又∵BD=2
∴若四边形BDEF或BDFE是平行四边形时,BD=EF。
∴,即。
若,解得,x=0或x=1(舍去),∴E(0,1)。
若,解得,,∴E或E。
综上,满足条件的点E为(2,3)、(0,1)、、。
(4)如图,过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,
设Q(x,x+1),则P(x,﹣x2+2x+3)。
∴。
∴
。
∵,
∴当时,△APC的面积取得最大值,最大值为。
【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,轴对称的性质,三角形三边关系,平行四边形的判定和性质,二次函数的最值。
【分析】(1)利用待定系数法求二次函数解析式、一次函数解析式。
(2)根据轴对称的性质和三角形三边关系作N点关于直线x=3的对称点N′,当M(3,m)在直线DN′上时,MN+MD的值最小。
(3)分BD为平行四边形对角线和BD为平行四边形边两种情况讨论。
(4)如图,过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,﹣x2+2x+3),求得线段PQ=﹣x2+x+2。由图示以及三角形的面积公式知,由二次函数的最值的求法可知△APC的面积的最大值。
5. (2012湖北黄冈14分)如图,已知抛物线的方程C1:与x 轴相交于点B、
C,与y 轴相交于点E,且点B 在点C 的左侧.
(1)若抛物线C1过点M(2,2),求实数m 的值.
(2)在(1)的条件下,求△BCE的面积.
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标.
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
【答案】解:(1)∵抛物线C1过点M(2,2),∴,解得m=4。
(2)由(1)得。
令x=0,得。∴E(0,2),OE=2。
令y=0,得,解得x1=-2,x=4。
∴B(-2,,0),C(4,0),BC=6。
∴△BCE的面积=。
(3)由(2)可得的对称轴为x=1。
连接CE,交对称轴于点H,由轴对称的性质和两点之间线段最短的性质,知此时BH+EH最小。
设直线CE的解析式为,则
,解得。∴直线CE的解析式为。
当x=1时,。∴H(1,)。
(4)存在。分两种情形讨论:
①当△BEC∽△BCF时,如图所示。
则,∴BC2=BE•BF。
由(2)知B(-2,0),E(0,2),即OB=OE,
∴∠EBC=45°,∴∠CBF=45°。
作FT⊥x轴于点F,则BT=TF。
∴令F(x,-x-2)(x>0),
又点F在抛物线上,∴-x-2=,
∵x+2>0(∵x>0),∴x=2m,F(2m,-2m-2)。
此时,
又BC2=BE•BF,∴(m+2)2= •,解得m=2±。
∵m>0,∴m=+2。
②当△BEC∽△FCB时,如图所示。
则,∴BC2=EC•BF。
同①,∵∠EBC=∠CFB,△BTF∽△COE,
∴。
∴令F(x,-(x+2))(x>0),
又点F在抛物线上,∴-(x+2)=。
∵x+2>0(∵x>0),
∴x=m+2。∴F(m+2,-(m+4)),,BC=m+2。
又BC2=EC•BF,∴(m+2)2= .
整理得:0=16,显然不成立。
综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2。
【考点】二次函数综合题,曲线上点的坐标与方程的关系,二次函数的性质,轴对称的性质,两点之间线段最短的性质,相似三角形的判定和性质。
【分析】(1)将点(2,2)的坐标代入抛物线解析式,即可求得m的值。
(2)求出B、C、E点的坐标,从而求得△BCE的面积。
(3)根据轴对称以及两点之间线段最短的性质,可知点B、C关于对称轴x=1对称,连接EC与对称轴的交点即为所求的H点。
(4)分两种情况进行讨论:
①当△BEC∽△BCF时,如图所示,此时可求得+2。
②当△BEC∽△FCB时,如图所示,此时得到矛盾的等式,故此种情形不存在。
6. (2012湖南郴州10分)如图,已知抛物线经过A(4,0),B(2,3),C(0,3)三点.
(1)求抛物线的解析式及对称轴.
(2)在抛物线的对称轴上找一点M,使得MA+MB的值最小,并求出点M的坐标.
(3)在抛物线上是否存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】解:(1)∵抛物线经过A(4,0),B(2,3),C(0,3)三点,
∴ ,解得。
∴抛物线的解析式为:,其对称轴为:。
(2)由B(2,3),C(0,3),且对称轴为x=1,可知点B、C是关于对称轴x=1的对称点。
如图1所示,连接AC,交对称轴x=1于点M,连接MB,则MA+MB=MA+MC=AC,根据两点之间线段最短可知此时MA+MB的值最小。
设直线AC的解析式为y=kx+b,
∵A(4,0),C(0,3),∴ ,解得。
∴直线AC的解析式为:y=x+3。
令x=1,得y= 。∴M点坐标为(1,)。
(3)结论:存在。
如图2所示,在抛物线上有两个点P满足题意:
①若BC∥AP1,此时梯形为ABCP1。
由B(2,3),C(0,3),可知BC∥x轴,则x轴与抛物线的另一个交点P1即为所求。
在中令y=0,解得x1=-2,x2=4。
∴P1(-2,0)。
∵P1A=6,BC=2,∴P1A≠BC。
∴四边形ABCP1为梯形。
②若AB∥CP2,此时梯形为ABCP2。
设CP2与x轴交于点N,
∵BC∥x轴,AB∥CP2,∴四边形ABCN为平行四边形。∴AN=BC=2。∴N(2,0)。
设直线CN的解析式为y=k1x+b1,则有: ,解得。
∴直线CN的解析式为:y=x+3。
∵点P2既在直线CN:y=x+3上,又在抛物线:上,
∴x+3=,化简得:x2-6x=0,解得x1=0(舍去),x2=6。
∴点P2横坐标为6,代入直线CN解析式求得纵坐标为-6。∴P2(6,-6)。
∵ABCN,∴AB=CN,而CP2≠CN,∴CP2≠AB。∴四边形ABCP2为梯形。
综上所述,在抛物线上存在点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形,点P的坐标为(-2,0)或(6,-6)。
【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质,轴对称的性质,
线段最短的性质,梯形的判定。
【分析】(1)已知抛物线上三点A、B、C的坐标,利用待定系数法即可求出抛物线的解析式,再由对称轴公式求出对称轴。
(2)如图1所示,连接AC,则AC与对称轴的交点即为所求之M点;已知点A、C的坐标,利用待定系数法求出直线AC的解析式,从而求出点M的坐标。
(3)根据梯形定义确定点P,如图2所示:①若BC∥AP1,确定梯形ABCP1.此时P1为抛物线与x轴的另一个交点,解一元二次方程即可求得点P1的坐标;②若AB∥CP2,确定梯形ABCP2.此时P2位于第四象限,先确定CP2与x轴交点N的坐标,然后求出直线CN的解析式,再联立抛物线与直线解析式求出点P2的坐标。
7. (2012四川自贡14分)如图,抛物线l交x轴于点A(﹣3,0)、B(1,0),交y轴于点C(0,﹣3).将抛物线l沿y轴翻折得抛物线l1.
(1)求l1的解析式;
(2)在l1的对称轴上找出点P,使点P到点A的对称点A1及C两点的距离差最大,并说出理由;
(3)平行于x轴的一条直线交抛物线l1于E、F两点,若以EF为直径的圆恰与x轴相切,求此圆的半径.
【答案】解:(1)如图1,设经翻折后,点A.B的对应点分别为A1、B1,
依题意,由翻折变换的性质可知A1(3,0),B1(﹣1,0),C点坐标不变,
∴抛物线l1经过A1(3,0),B1(﹣1,0),C(0,﹣3)三点,
设抛物线l1的解析式为y=ax2+bx+c,则
,解得。
∴抛物线l1的解析式为:y=x2﹣2x﹣3。
(2)抛物线l1的对称轴为:x=,
如图2,连接B1C并延长,与对称轴x=1交于点P,则点P即为所求。
此时,|PA1﹣PC|=|PB1﹣PC|=B1C。
设P′为对称轴x=1上不同于点P的任意一点,
则有:|P′A﹣P′C|=|P′B1﹣P′C|<B1C(三角形两边之差小于第三边),
∴|P′A﹣P′C|<|PA1﹣PC|,即|PA1﹣PC|最大。
设直线B1C的解析式为y=kx+b,则
,解得k=b=﹣3。∴直线B1C的解析式为:y=﹣3x﹣3。
令x=1,得y=﹣6。∴P(1,﹣6)。
(3)依题意画出图形,如图3,有两种情况:
①当圆位于x轴上方时,设圆心为D,半径为r,
由抛物线及圆的对称性可知,点D位于对称轴x=1上,则D(1,r),F(1+r,r)。
∵点F(1+r,r)在抛物线y=x2﹣2x﹣3上,
∴r=(1+r)2﹣2(1+r)﹣3,化简得:r2﹣r﹣4=0
解得r1=,r2=(舍去)。
∴此圆的半径为;
②当圆位于x轴上方时,同理可求得圆的半径为。
综上所述,此圆的半径为或。
【考点】二次函数综合题,翻折变换的性质,待定系数法,曲线上点的坐标与方程的关系,二次函数的轴对称性质,三角形三边关系,直线和圆的位置关系,解一元二次方程和二元一次方程组。
【分析】(1)根据翻折变换的性质,求得A1和B1的坐标,用待定系数法即可求得抛物线l1的解析式,
(2)根据三角形两边之差小于第三边的性质即可知,B1C的延长线与对称轴x=1的交点P,即为所求。求出B1C的解析式即可求得点P的坐标。
(3)设圆心为D,半径为r,根据直线与圆相切的性质知D(1,r),F(1+r,r)。由于点F在抛物线l1上,代入即可求得r。分圆位于x轴上方和下方两种情况讨论即可。
展开阅读全文