收藏 分销(赏)

基于第一性原理结构材料的力学性质研究样本.doc

上传人:精*** 文档编号:4664296 上传时间:2024-10-08 格式:DOC 页数:9 大小:115KB
下载 相关 举报
基于第一性原理结构材料的力学性质研究样本.doc_第1页
第1页 / 共9页
基于第一性原理结构材料的力学性质研究样本.doc_第2页
第2页 / 共9页
基于第一性原理结构材料的力学性质研究样本.doc_第3页
第3页 / 共9页
基于第一性原理结构材料的力学性质研究样本.doc_第4页
第4页 / 共9页
基于第一性原理结构材料的力学性质研究样本.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。基于第一性原理结构材料的力学性质研究基于第一性原理结构材料的力学性质研究摘 要基于电子结构理论的第一性原理的计算方法是最有前途的材料设计的计算方法之一。虽然只有少数力学性能( 例如, 理想的强度和弹性常数) 是直接由第一性原理计算得出, 经过提取适当的计算参数, 这种方法能够预测复杂的机械性能, ( 例如, 体弹性模量剪切模量的比例, 形成能和晶格缺陷之间的相互作用能) 并采取适当的模型( 如位错核心的PeierlsNabarro模型) 。在本论文中, 我们简要回顾一下最近的第一性原理对结构材料机械性能的研究, 涵盖了理想的强度,

2、弹性常数, 晶格缺陷等主题。最近的一些主要如相干势耦合近似第一性原理的方法( 足够精确的计算具有复杂元素成分的任意合金的弹性常数) 对重要的低C11-C12超级属性的BCC-Ti基合金的重视, 溶质的相互作用和抗蠕变性都突出显示。关键词: 第一性原理的方法; 机械性能; 理想的强度; 弹性模量; 晶格缺1.前言机械性能是结构材料的主要性能。获取所需的性能材料的经典方法是所谓的试错, 即或多或少从周期表中任意找出数以百计的化学物元素组合来试着找到材料成分的公式。由于花费大量的时间和金钱, 这样的材料设计是然不是最佳的。材料科学家早就预计, 她们能够有效地为所需的性能材料找到合适的公式, 即选择化

3、学元素有意根据目标的机械性能。随着材料的建模方法和计算机技术发展, 材料科学家的梦想在逐渐接近现实。在不同的材料建模方法, 基于电子结构的理论第一性原理( 或从头算) 1为最有前途的方法之一。经过求解一个系统中给定的化学位置和晶格结构的自洽薛定谔方程( 实验或经验参数都不需要) , 这些方法产生的电, 子波函数和有关的物理量, 如系统的总能量, 原子力等。大多数固体的性能依赖于电子的行为, 由于电子是约束原子核和固体的胶水, 因此能够经过固体的电子结构预测。然而, 经过第一性原理对电子结构的计算来了解机械性能有时不是很容易, 因为许多因素, 从电子到原子, 微观结构, 连续介质都包含在内。只有

4、少数如理想强度和弹性常数等机械性能直接由第一性原理计算得出。然而, 大多数机械性能像屈服强度一样具有晶格结构敏感而且高度依赖于晶格缺陷, 例如空缺、 间隙或置换原子, 位错, 晶界, 层错等, 因此, 第一性原理晶格缺陷的调查能够提供一个间接但有效的机械性能预测方式。在本文中, 我们试图给出一个过去两年的经过第一性原理方法计算机械性能的简要回顾, 涵盖理想强度, 弹性常数和晶格缺陷等问题, 蒂斯缺陷。受限于本次审查的长度, 我们应该指出, 我们不可能涉及这个非常活跃的领域的所有出版物, 不能讨论更多细节的主问题。由于同样的原因, 本次审查不包括结构材料的设计一些其它有趣的问题( 如相稳定性和相

5、变, 相图, 晶格动力学, 等等) 。2理想强度 理想的强度代表了晶体的强度极限, 提供了晶体的连接方法, 和, 因此, 这是工程设计和理论间无害环境技术。它是可从第一性原理计算直接得出的性能之一 。运用一系列的增量应力于 一个非应变晶体( 拉伸或剪切 在所需方向晶体) , 人们能够经过第一性原理获取 最终应力。理想强度是使材料弹性不稳定所需提供的最大应力 。 在过去的两年里, 第一性原理计算材料的理想强度 如纯金属( Fe2,Al3-5,Si4和Cu5) , 金属间化合物 ( 例如, 过渡金属铝化6,7) , 和陶瓷 ( 例如, Si3N48,9) , 等等, 都被广泛报道。除了理想强度,

6、这是最近提出的。Yip和collaborators认为, 在理想剪切强度时发生最大剪应变 , 就像她们定义的那样, 剪切强度也是材料的固有属性 这表明定量的电子和原子在 10断键点发生固体反应。Yip和collaborators已经检查22种简单金属和陶瓷的压应力。剪切强度可能用来解释为什么铝比Cu具有较大的理想强度 虽然铝在111、 112具有较小的剪切模量5, 即铝比铜具有较大的剪切模量( 在弹性不稳定前有更多扩展形成范围) 。理想强度的第一性原理计算 多集中于完美的晶体, 因为一个大的系统中 需要表示晶体缺陷, 因此 更多的计算资源是必须的。随着电子结构理论的发展( 如第一性原理 赝势法

7、) 及计算机技术, 理论家也关注有缺陷的晶体的理想强度。铝九号晶界的理想抗张强度已经经过第一性原理 赝势法进行研究11。结果表明, 和完美的晶体相比由于晶界的重建使晶界处的理想强度减少的并不多。理想的强度 晶体缺陷的理想强度提供了一些真实材料的缺陷区域固有特性的信息。3弹性性能 弹性系数是另一种可直接由第一性原理的方法推测的机械性能。虽然理想强度代表了材料大变形的非线性响应 , 弹性系数反映了晶格在平衡位置的小应变的线性响应 。经过在晶体平衡位置进行一系列的应变, 第一性原理的方法给出了最终应力和总 能量。根据弹性关系拟合应力应变或总能量应变曲线 , 人们会得到晶体( 见参考文献12审查) 的

8、弹性常数。近几年, Laves相12-15, 过渡/ 贵重的金属铝化物/氮化物/碳化物16-19和铂金属基化合物20, 具有相对 高强度和熔融温度, 由于其潜在的高温应用而备受 关注, ( 在航天或航空引擎如) 。这些金属间化合物弹性常数已经过第一性原理计算 广泛的研究 12-20。 原子占用晶格位置在上述材料中很好的界定。然而, 最真实的 结构材料是非常复杂的而且可能含有合金原子随机分布在晶体中。原则上, 在第一性原理的方法框架中, 晶体晶格的结点 只能有一种原子占据, 这使得直接计算随机合金, 特别是那些复杂多成分合金变得非常不方便。现在这个困难已经被Vitos等22经过在第一原理方法中相

9、干势近似(CPA)的实现而解决21 。由于使用全电荷密度扩展作为基础的轨道组22,23, 第一原理方法中相干势近似(CPA)是足够精确校准, 任意合金的弹性常数。这种方法 已成功地应用在计算奥氏体不锈钢的弹性常数( FeCrNi和FeCrNiMo) 24和随机铝锂合金25。结果 在与得到得实验值吻合良好。 第一性原理CPA提供了一种可行的方法 对于真正合金性质的第一性原理计算。从第一原理计算的弹性常数, 有时也会得到各向同性弹性模量, 体积模量 B, 剪切模量G, 和杨氏模量E使用 如Heuss, 福格特, 或希尔计划平均系统26。一些 其它属性, 如弹性泊松比, 各向异性 值等, 也可得出。

10、这些量密切 涉及到材料更复杂的机械性能如延展性和可塑性等。 , Gschneidner等发现了一个具有B2结构韧性稀土 金属间化合物家族27。它们的 计算表明, 该化合物的泊松比和各向异性值分别是0.3和1.0, 靠近BCC过渡金属, 这表明 这些化合物现对于较脆的非稀土B2相更易显示各向同性的性质 28。这可能能够解释稀土化合物不具有脆性。对稀土机械性能背后的物理探索可能为改进其它金属间化合物的延展性提供方法。早在1954年, 对体弹性模量与剪切模量比分析的基础上, B/G, 纯金属, 皮尤认为的B / G反映了金属塑性29: B/G越大, 金属的韧性越大。在其它金属像金属间化合物中还发现相

11、似的趋势。B/G是当前作为一个预测在第一原理材料的设计中被广泛地接受。Vitos et al使用第一性原理中的CPA方法计算了弹性常数和B/G值以及剪切模量作为成分公式 24。从化学成分-的B/G和组成剪切模量的关系, 她们预测 两种新的奥氏体不锈钢的基本组成: 一个是( Fe13Cr8Ni) 具有优良的硬度, 另一个( Fe- 18Cr - 24Ni) 与显著的耐各种 形式的局部腐蚀和中间硬度。除了B / G, 最近发现的C11C12对材料的机械性能也 非常的重要。 Ikehata等已经利用第一性原理赝势法计算出含有钒, 铌, 钽, 钼, 或W合金元素的钛合金的二元弹性常数 * 30。结果表

12、明, 当合金下降到 价电子数为4.20-4.24成分范围内 , C11C12趋近于零, 它被认为 促进低杨氏模量, 超塑性, 和所谓的口香糖金属31的超弹性。相似的, 对Souvatzis等人计算。结果表明, 如价电子数为6.6-6.9WRe, WTc, MoTc和MoRe部分其它二元合金 难以察觉的低C11 C12和因此可能作为胶金属替代品32。根据这些调查, C11的- C12可在使用理论体系寻找新的材料中视为另一种有用的指标。弹性模量也作为机械性能的参数进入了一些经典模型, 它可能经过第一性原理预测较复杂的机械性能。 例如, 根据奥罗万标准, 创造一个裂纹的理论应力 E是杨氏模量, s的

13、表面能, a0间平面的间距。在一个平衡裂纹的弹性动力G是剪切模量, v泊松比, K1是应力强度因子。这些第一性原理相结合的模型最近被Ding等人用来研究脆性材料B6O, BN, 3C-SiC,andSi硬度和断裂韧性之间的相关33。4晶格缺陷不同的是理想强度和弹性性能是直接受控于本身的键, 其它一些机械性能, 如屈服强度, 断裂强度, 抗蠕变性, 等等, 都是对晶格结构敏感的。对结构敏感特性著名的例子是, 由于晶格的缺陷, 真实晶体的屈服强度是理想晶体理论值的1/1000。因此, 为了预测结构材料的机械性能, 理解晶格缺陷的行为很重要。根据她们的空间格局, 有三种晶格缺陷: 零维的点缺陷, 如

14、空位, 间隙原子, 与合金原子;一维, 位错;二维缺陷, 如堆积、 晶界等, 我们将依次讨论第一性原理对这些晶格缺陷研究。4.1零维缺陷: 点缺陷点缺陷主要与原子扩散特性相关, 例如, 抗蠕变性。第一性原理研究金属中的点缺陷, 34 金属间化合物37, 任意合金38, 等等, 有大量的文献。然而, 点缺陷究竟如何 影响机械性能在这些文献中很少提到。 很少讨论这些文件。我们已经计算 一系列合金原子之间的相互作用能 和空缺的x-钛采用线性指导理论( LMTO - ASA) 39。相对于可行的抗蠕变性实验中的相互作用能, 我们发现, 那些 合金原子对空缺的吸引力增加抗蠕变特性 而那些对空位没有吸引力

15、的不增加( 见图1, 表1和2) 。这是能够理解的, 因为 合金原子和空缺之间的相互作用有利于合金原子扩散到位错附近形成Cottrell气团, 因此抑制蠕变过程中位错的滑移。 我们还 研究了钛合金中合金原子之间的相互作用, 这使聚类/订购趋势 合金40。使用Flinn模型, 相互作用能能够用于预测对 短程有序的临界剪应力的贡献。正确的趋势 被发现加强Al, Si, Ga, Ge对钛合金的影响 。最近, 梅耶等人。研究了间隙H对Nb中体积模量和C44的影响LMTO 16。结果表明, 增加等量的H, Nb的体积弹性模量增加, 但C44降低, 都和实验相符。在同一份文件, 她们还报告了NbCr2_x

16、Vx的弹性常数作为成分函数, 其中c44几乎保持不变, 体积模量随着x的增加而减少。图 1.Ti合金中空位和合金原子之间的相互作用能定义为DE = E(V + S,N) + E(N) _ E(V,N) + E(S + N). E(V +S,N), E(V, N), 和 E(S,N)是的N-节点超级晶胞总能量包含最近邻的一个空位和一个合金原子, 分别只有一个空缺, 一个合金原子; E(N)是完美晶胞的总能量。负值代表空位和合金原子之间相互吸引作用, 而正值代表排斥。表1 不同温度下, 非合金x钛和x基钛合金的100- H蠕变破裂压力实验值表2 在538和379MPa下, 96小时后蠕变形成含有一

17、些b相稳定剂的x基Ti5Al5Sn2Zr0.8Mo0.5Si合金4.2一维缺陷: 错位塑性变形是主要取决于位错的滑移。在模拟中, 长程的压力错位可用连续弹性试验方法来描述。然而, 位错核心 区域有时会严重地影响材料的塑性, 这已不能用连续弹性试验方法来描述。近年来, 位错核心区域的第一性原理调查 已引起广泛关注。直接经过使用基于第一性原理超晶胞建模( 用一个孤立位错地周期性边界条件) 的方法是不实际的, 因为: ( 1) 位错产生的应力场是长程地, 因此必须使用非常大的超晶胞以避免位错和附近超晶胞之间的相互作用, 系统蒸发散在附近的超级单体, 当前这已经超出第一性原理方法的使用范围 ;( 2)

18、 一个孤立位错的几何结构打破了周期对称性。已经制定几个办法来解决上述问题: ( 1) 关于非孤立为错的位错偶极子阵列模拟 ( 例如, 41) , ( 2) 具有灵活边界条件地孤立位错的直接模拟( 例如, 42,43) ;( 3) 结合第一性原理产生对基层错能( 所谓的v表面) 来描述二维PeierlsNabarro位错核心( 见44) 。对于这些方法的详情, 我们请读者参照Woodward最近的审查文件45。由Shen and Wang46提出第一性原理计算位错的一个最新发展, 在v表面掺入相模型, 不在参考范围45内。使用这种方法, 她们 可真实的以任意配置分解错位 , 扩展位错之间的相互作

19、用, 创造和湮没各种平面。4.3 二维缺陷: 层错和孪晶当错位的滑移由于某些原因受阻, 晶体会产生堆垛层错或形成孪晶( 平面晶格缺陷) 。这种塑性变形地更大趋势( 在文献 47中定义为twinnability) 与较低的层错或孪晶形成能有关。这些形成能能够很容易地经过第一性原理对缺陷晶体和完美晶体总能量的比较来获得。在文献47中报道了八种FCC金属的固有层错能, 不稳定层错能, 不稳定孪晶能, 以及外在的层错能和孪晶界能量。经过这些能量预测出来地金属的twinnability与实验结果相一致。4.4 不同层面缺陷之间的相互作用由于大多数结构材料在合金的冶炼过程中或材料和大气的化学反应过程中不可

20、避免地引入杂质( 例如, 氢, 碳, 磷, 硫, 等) , 获得点缺陷( 合金原子/杂质) 和其它晶格缺陷如位错, 层错和晶界之间的相互作用对理解材料的机械性能是至关重要的。最近, 在Medvedeva, Gornostyrev, 和Freeman最近的一篇文章 中 48, BCC-Mo合金中合金原子和广义层错能之间的交互作用 ( GSF, 即v表面) 已经经过全部潜力LMTO方法进行了研究, 揭示了这些合金中固溶体软化的电子来源。该 作者表明, 相对于MO来说, 额外添加5D电子( (Re, Os, Ir,和Pt) 导致了GSF能的下降, 那些具有较少5D电子( (Hf和Ta) 则急剧增加。

21、利用广义PeierlsNabarro非平面位错核心的模式, 她们结合GSF能减少和对核和双扭结德加强以及错位的流动性的增加, 从而有助于BCC-Mo合金中固溶体软化。晶界也能够被看作是一种平面缺陷。晶界的相对强度 决定晶体的断裂方式: 如果晶界比整个晶体弱/强, 金属是最有可能表现出沿晶/穿晶断裂。合金元素或杂质偏析 会显著地影响晶界强度。此主题已被广泛的研究在金属( 如Al 49,Fe 5053,Ni 5356,Cu57,58) , ( 如金属间化合物, Ni3Al 59) , 和 陶瓷( 如Al2O3 60,61) 等文献。对于间隙杂质H, P, S由于其对晶界非粘着的影响主要是作为脆化元

22、素经过第一性原理计算确定 50,54, 59, 与实验结果一致。根据Rice and Wang 62的理论, 这些元素相对于晶界的隔离 是晶间脆性的主要原因 。 Geng et al最近论述了第一性原理研究H-induced的脆化63。与H, P, S等相反, B的分离一般导致产生凝聚力 加强晶界51, 59。这有两个有关粘着加强/减弱的起源参数影响合金 原子或晶界上的杂质: ( 1) 电子 效应, 例如, B被认为在Ni和Ni3Al晶界与Ni形成强的共价键 59, 所附参考, 这增强了晶界结合力 ( 2) 原子尺寸效应, 例如, 有人认为, 大Bi原子经过与基体Cu原子的分离削弱原子间结合力

23、, 因此使晶界变脆57。 5结论和备注 最后, 我们对近年来用第一性原理来研究结构材料的机械性能进行简要回顾。这些结果 调查表明, 第一性原理方法可作为结构材料的设计实用工具。因为第一性原理计算是在电子级别的原则, 变而且在零度进行, 而结构材料的机械性能一般是宏观的而且是在有限温度下, 进一步努力找出或定义更多可计算的参数和模型, 以弥合第一性原理和复杂机械性能之间大小和温度的差距, 对未来设计新材料有重要影响。致谢笔者是非常感谢中国科学院的支持( 批准号INF105-SCE-02-04) 中, 中国科技部( 批准号TG 067105) 和国家自然科学基金NSFC( 批准号50301014) 。参考文献( 略)

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服