1、8.4 三元一次方程解法举例难点:针对方程组的特点,灵活使用代入法、加减法等重要方法一、知识链接:前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解。实际上,有不少问题中会含有更多的未知数,对于这样的问题,我们将如何来解决呢?【引例】小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张提出问题:1题目中有几个条件?2问题中有几个未知量?3根据等量关系你能列出方程组吗?【列表分析】 (师生共同完成)(三个量关系) 每张面值 张数 = 钱数1元xx2元y2y5元z5z合 计12
2、22注1元纸币的数量是2元纸币数量的4倍,即x=4y解:(学生叙述个人想法,教师板书)设1元,2元,5元的张数为x张,y张,z张. 根据题意列方程组为:【得出定义】 (师生共同总结概括)这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组二、自主学习:【解法探究】怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言)例1 .解方程组分析1:发现三个方程中x的系数都是1,因此确定用减法“消x”.分析2:方程是关于x的表达式,确定“消x”的目标.【
3、方法归纳】根据方程组的特点,由学生归纳出此类方程组为:类型一:有表达式,用代入法.针对上面的例题进而分析,例1中方程中缺z,因此利用、消z,可达到消元构成二元一次方程组的目的. 根据方程组的特点,由学生归纳出此类方程组类型二:缺某元,消某元.教师提示:当然我们还可以通过消掉未知项y来达到将“三元”转化为“二元”目的,同学可以课下自行尝试一下.三、交流合作1.解三元一次方程组:四、课外拓展 (继续加油,你会发现自己真的很棒)1、下列方程组不是三元一次方程组的是( )A.B. CD 2、将三元一次方程组 ,经过步骤(1)- (3)和(3)4+(2)消去未知数后,得到的二元一次方程组是( )AB.C.D3、已知,则 。五、总结与作业今日表现:组长评价:教师寄语: