收藏 分销(赏)

嵌入式内核启动流程样本.doc

上传人:天**** 文档编号:4587016 上传时间:2024-09-30 格式:DOC 页数:29 大小:349KB 下载积分:10 金币
下载 相关 举报
嵌入式内核启动流程样本.doc_第1页
第1页 / 共29页
嵌入式内核启动流程样本.doc_第2页
第2页 / 共29页


点击查看更多>>
资源描述
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除。 Linux内核构成 (国嵌) Linux/arch/arm/boot/compressed/head.s 1.解压缩 2.初始化 3.启动应用程序 1 arch/arm/boot/compressed/Makefile arch/arm/boot/compressed/vmlinux.lds 2. arch/arm/kernel/vmlinux.lds Linux内核启动流程 ( 国嵌) arch/arm/boot/compressed/start.S( head.s—负责解压缩) Start: .type start,#function .rept 8 mov r0, r0 .endr b 1f .word 0x016f2818 @ Magic numbers to help the loader .word start @ absolute load/run zImage address .word _edata @ zImage end address 1: mov r7, r1 @ save architecture ID mov r8, r2 @ save atags pointer 这也标志着u-boot将系统完全的交给了OS, bootloader生命终止。之后代码在133行会读取cpsr并判断是否处理器处于supervisor模式——从u-boot进入kernel, 系统已经处于SVC32模式; 而利用angel进入则处于user模式, 还需要额外两条指令。之后是再次确认中断关闭, 并完成cpsr写入 mrs r2, cpsr @ get current mode tst r2, #3 @ not user? bne not_angel mov r0, #0x17 @ angel_SWIreason_EnterSVC swi 0x123456 @ angel_SWI_ARM not_angel: mrs r2, cpsr @ turn off interrupts to orr r2, r2, #0xc0 @ prevent angel from running msr cpsr_c, r2 然后在LC0地址处将分段信息导入r0-r6、 ip、 sp等寄存器, 并检查代码是否运行在与链接时相同的目标地址, 以决定是否进行处理。由于现在很少有人不使用loader和tags, 将zImage烧写到rom直接从0x0位置执行, 因此这个处理是必须的( 可是zImage的头现在也保留了不用loader也可启动的能力) 。arm架构下自解压头一般是链接在0x0地址而被加载到0x30008000运行, 因此要修正这个变化。涉及到 r5寄存器存放的zImage基地址 r6和r12( 即ip寄存器) 存放的got( global offset table) r2和r3存放的bss段起止地址 sp栈指针地址 很简单, 这些寄存器统统被加上一个你也能猜到的偏移地址 0x30008000。该地址是s3c2410相关的, 其它的ARM处理器能够参考下表 PXA2xx是0xa0008000 IXP2x00和IXP4xx是0x00008000 Freescale i.MX31/37是0x80008000 TI davinci DM64xx是0x80008000 TI omap系列是0x80008000 AT91RM/SAM92xx系列是0x 8000 Cirrus EP93xx是0x00008000 这些操作发生在代码172行开始的地方, 下面只粘贴一部分 add r5, r5, r0 add r6, r6, r0 add ip, ip, r0 后面在211行进行bss段的清零工作 not_relocated: mov r0, #0 1: str r0, [r2], #4 @ clear bss str r0, [r2], #4 str r0, [r2], #4 str r0, [r2], #4 cmp r2, r3 blo 1b 然后224行, 打开cache, 并为后面解压缩设置64KB的临时malloc空间 bl cache_on mov r1, sp @ malloc space above stack add r2, sp, #0x10000 @ 64k max 接下来238行进行检查, 确定内核解压缩后的Image目标地址是否会覆盖到zImage头, 如果是则准备将zImage头转移到解压出来的内核后面 cmp r4, r2 bhs wont_overwrite sub r3, sp, r5 @ > compressed kernel size add r0, r4, r3, lsl #2 @ allow for 4x expansion cmp r0, r5 bls wont_overwrite mov r5, r2 @ decompress after malloc space mov r0, r5 mov r3, r7 bl decompress_kernel 真实情况——在大多数的应用中, 内核编译都会把压缩的zImage和非压缩的Image链接到同样的地址, s3c2410平台下即是0x30008000。这样做的好处是, 人们不用关心内核是Image还是zImage, 放到这个位置执行就OK, 因此在解压缩后zImage头必须为真正的内核让路。 在250行解压完毕, 内核长度返回值存放在r0寄存器里。在内核末尾空出128字节的栈空间用, 而且使其长度128字节对齐。 add r0, r0, #127 + 128 @ alignment + stack bic r0, r0, #127 @ align the kernel length 算出搬移代码的参数: 计算内核末尾地址并存放于r1寄存器, 需要搬移代码原来地址放在r2, 需要搬移的长度放在r3。然后执行搬移, 并设置好sp指针指向新的栈( 原来的栈也会被内核覆盖掉) add r1, r5, r0 @ end of decompressed kernel adr r2, reloc_start ldr r3, LC1 add r3, r2, r3 1: ldmia r2!, {r9 - r14} @ copy relocation code stmia r1!, {r9 - r14} ldmia r2!, {r9 - r14} stmia r1!, {r9 - r14} cmp r2, r3 blo 1b add sp, r1, #128 @ relocate the stack 搬移完成后刷新cache, 因为代码地址变化了不能让cache再命中被内核覆盖的老地址。然后跳转到新的地址继续执行 bl cache_clean_flush add pc, r5, r0 @ call relocation code 注意——zImage在解压后的搬移和跳转会给gdb调试内核带来麻烦。因为用来调试的符号表是在编译是生成的, 并不知道以后会被搬移到何处去, 只有在内核解压缩完成之后, 根据计算出来的参数”告诉”调试器这个变化。以撰写本文时使用的zImage为例, 内核自解压头重定向后, reloc_start地址由0x30008360变为0x30533e60。故我们要把vmlinux的符号表也相应的从0x30008000后移到0x30533b00开始, 这样gdb就能够正确的对应源代码和机器指令。 随着头部代码移动到新的位置, 不会再和内核的目标地址冲突, 能够开始内核自身的搬移了。此时r0寄存器存放的是内核长度( 严格的说是长度外加128Byte的栈) , r4存放的是内核的目的地址0x30008000, r5是当前内核存放地址, r6是CPU ID, r7是machine ID, r8是atags地址。代码从501行开始 reloc_start: add r9, r5, r0 sub r9, r9, #128 @ do not copy the stack debug_reloc_start mov r1, r4 1: .rept 4 ldmia r5!, {r0, r2, r3, r10 - r14} @ relocate kernel stmia r1!, {r0, r2, r3, r10 - r14} .endr cmp r5, r9 blo 1b add sp, r1, #128 @ relocate the stack 接下来在516行清除并关闭cache, 清零r0, 将machine ID存入r1, atags指针存入r2, 再跳入0x30008000执行真正的内核Image call_kernel: bl cache_clean_flush bl cache_off mov r0, #0 @ must be zero mov r1, r7 @ restore architecture number mov r2, r8 @ restore atags pointer mov pc, r4 @ call kernel 内核代码入口在arch/arm/kernel/head.S文件的83行。首先进入SVC32模式, 并查询CPU ID, 检查合法性 msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE @ ensure svc mode @ and irqs disabled mrc p15, 0, r9, c0, c0 @ get processor id bl __lookup_processor_type @ r5=procinfo r9=cpuid movs r10, r5 @ invalid processor (r5=0)? beq __error_p @ yes, error 'p' 接着在87行进一步查询machine ID并检查合法性 bl __lookup_machine_type @ r5=machinfo movs r8, r5 @ invalid machine (r5=0)? beq __error_a @ yes, error 'a' 其中__lookup_processor_type在linux-2.6.24-moko-linuxbj/arch/arm/kernel/head-common.S文件的149行, 该函数首将标号3的实际地址加载到r3, 然后将编译时生成的__proc_info_begin虚拟地址载入到r5, __proc_info_end虚拟地址载入到r6, 标号3的虚拟地址载入到r7。由于adr伪指令和标号3的使用, 以及__proc_info_begin等符号在linux-2.6.24-moko-linuxbj/arch/arm/kernel/vmlinux.lds而不是代码中被定义, 此处代码不是非常直观, 想弄清楚代码缘由的读者请耐心阅读这两个文件和adr伪指令的说明。 r3和r7分别存储的是同一位置标号3的物理地址( 由于没有启用mmu, 因此当前肯定是物理地址) 和虚拟地址, 因此儿者相减即得到虚拟地址和物理地址之间的offset。利用此offset, 将r5和r6中保存的虚拟地址转变为物理地址 __lookup_processor_type: adr r3, 3f ldmda r3, {r5 - r7} sub r3, r3, r7 @ get offset between virt&phys add r5, r5, r3 @ convert virt addresses to add r6, r6, r3 @ physical address space 然后从proc_info中读出内核编译时写入的processor ID和之前从cpsr中读到的processor ID对比, 查看代码和CPU硬件是否匹配( 想在arm920t上运行为cortex-a8编译的内核? 不让! ) 。如果编译了多种处理器支持, 如versatile板, 则会循环每种type依次检验, 如果硬件读出的ID在内核中找不到匹配, 则r5置0返回 1: ldmia r5, {r3, r4} @ value, mask and r4, r4, r9 @ mask wanted bits teq r3, r4 beq 2f add r5, r5, #PROC_INFO_SZ @ sizeof(proc_info_list) cmp r5, r6 blo 1b mov r5, #0 @ unknown processor 2: mov pc, lr __lookup_machine_type在linux-2.6.24-moko-linuxbj/arch/arm/kernel/head-common.S文件的197行, 编码方法与检查processor ID完全一样, 请参考前段 __lookup_machine_type: adr r3, 3b ldmia r3, {r4, r5, r6} sub r3, r3, r4 @ get offset between virt&phys add r5, r5, r3 @ convert virt addresses to add r6, r6, r3 @ physical address space 1: ldr r3, [r5, #MACHINFO_TYPE] @ get machine type teq r3, r1 @ matches loader number? beq 2f @ found add r5, r5, #SIZEOF_MACHINE_DESC @ next machine_desc cmp r5, r6 blo 1b mov r5, #0 @ unknown machine 2: mov pc, lr 代码回到head.S第92行, 检查atags合法性, 然后创立初始页表 bl __vet_atags bl __create_page_tables 创立页表的代码在218行, 首先将内核起始地址-0x4000到内核起始地址之间的16K存储器清0 __create_page_tables: pgtbl r4 @ page table address /* * Clear the 16K level 1 swapper page table */ mov r0, r4 mov r3, #0 add r6, r0, #0x4000 1: str r3, [r0], #4 str r3, [r0], #4 str r3, [r0], #4 str r3, [r0], #4 teq r0, r6 bne 1b 然后在234行将proc_info中的mmu_flags加载到r7 ldr r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags在242行将PC指针右移20位, 得到内核第一个1MB空间的段地址存入r6, 在s3c2410平台该值是0x300。接着根据此值存入映射标识 mov r6, pc, lsr #20 @ start of kernel section orr r3, r7, r6, lsl #20 @ flags + kernel base str r3, [r4, r6, lsl #2] @ identity mapping 完成页表设置后回到102行, 为打开虚拟地址映射作准备。设置sp指针, 函数返回地址lr指向__enable_mmu, 并跳转到linux-2.6.24-moko-linuxbj/arch/arm/mm/proc-arm920.S的386行, 清除I-cache、 D-cache、 write buffer和TLB __arm920_setup: mov r0, #0 mcr p15, 0, r0, c7, c7 @ invalidate I,D caches on v4 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer on v4 #ifdef CONFIG_MMU mcr p15, 0, r0, c8, c7 @ invalidate I,D TLBs on v4 #endif然后返回head.S的158行, 加载domain和页表, 跳转到__turn_mmu_on __enable_mmu: #ifdef CONFIG_ALIGNMENT_TRAP orr r0, r0, #CR_A #else bic r0, r0, #CR_A #endif #ifdef CONFIG_CPU_DCACHE_DISABLE bic r0, r0, #CR_C #endif #ifdef CONFIG_CPU_BPREDICT_DISABLE bic r0, r0, #CR_Z #endif #ifdef CONFIG_CPU_ICACHE_DISABLE bic r0, r0, #CR_I #endif mov r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \ domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \ domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | \ domain_val(DOMAIN_IO, DOMAIN_CLIENT)) mcr p15, 0, r5, c3, c0, 0 @ load domain access register mcr p15, 0, r4, c2, c0, 0 @ load page table pointer b __turn_mmu_on在194行把mmu使能位写入mmu, 激活虚拟地址。然后将原来保存在sp中的地址载入pc, 跳转到head-common.S的__mmap_switched, 至此代码进入虚拟地址的世界 mov r0, r0 mcr p15, 0, r0, c1, c0, 0 @ write control reg mrc p15, 0, r3, c0, c0, 0 @ read id reg mov r3, r3 mov r3, r3 mov pc, r13 在head-common.S的37行开始清除内核bss段, processor ID保存在r9, machine ID报存在r1, atags地址保存在r2, 并将控制寄存器保存到r7定义的内存地址。接下来跳入linux-2.6.24-moko-linuxbj/init/main.c的507行, start_kernel函数。这里只粘贴部分代码( 第一个C语言函数, 作一系列的初始化) __mmap_switched: adr r3, __switch_data + 4 ldmia r3!, {r4, r5, r6, r7} cmp r4, r5 @ Copy data segment if needed 1: cmpne r5, r6 ldrne fp, [r4], #4 strne fp, [r5], #4 bne 1b asmlinkage void __init start_kernel(void) { char * command_line; extern struct kernel_param __start___param[], __stop___param[]; smp_setup_processor_id(); /* * Need to run as early as possible, to initialize the * lockdep hash: */ lockdep_init(); debug_objects_early_init(); cgroup_init_early(); local_irq_disable(); early_boot_irqs_off(); early_init_irq_lock_class(); /* * Interrupts are still disabled. Do necessary setups, then * enable them */ lock_kernel(); tick_init(); boot_cpu_init(); page_address_init(); printk(KERN_NOTICE); printk(linux_banner); setup_arch(&command_line); mm_init_owner(&init_mm, &init_task); setup_command_line(command_line); setup_per_cpu_areas(); setup_nr_cpu_ids(); smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */ /* * Set up the scheduler prior starting any interrupts (such as the * timer interrupt). Full topology setup happens at smp_init() * time - but meanwhile we still have a functioning scheduler. */ sched_init(); /* * Disable preemption - early bootup scheduling is extremely * fragile until we cpu_idle() for the first time. */ preempt_disable(); build_all_zonelists(); page_alloc_init(); printk(KERN_NOTICE "Kernel command line: %s\n", boot_command_line); parse_early_param(); parse_args("Booting kernel", static_command_line, __start___param, __stop___param - __start___param, &unknown_bootoption); if (!irqs_disabled()) { printk(KERN_WARNING "start_kernel(): bug: interrupts were " "enabled *very* early, fixing it\n"); local_irq_disable(); } sort_main_extable(); trap_init(); rcu_init(); /* init some links before init_ISA_irqs() */ early_irq_init(); init_IRQ(); pidhash_init(); init_timers(); hrtimers_init(); softirq_init(); timekeeping_init(); time_init(); sched_clock_init(); profile_init(); if (!irqs_disabled()) printk(KERN_CRIT "start_kernel(): bug: interrupts were " "enabled early\n"); early_boot_irqs_on(); local_irq_enable(); /* * HACK ALERT! This is early. We're enabling the console before * we've done PCI setups etc, and console_init() must be aware of * this. But we do want output early, in case something goes wrong. */ console_init(); if (panic_later) panic(panic_later, panic_param); lockdep_info(); /* * Need to run this when irqs are enabled, because it wants * to self-test [hard/soft]-irqs on/off lock inversion bugs * too: */ locking_selftest(); #ifdef CONFIG_BLK_DEV_INITRD if (initrd_start && !initrd_below_start_ok && page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) { printk(KERN_CRIT "initrd overwritten (0x%08lx < 0x%08lx) - " "disabling it.\n", page_to_pfn(virt_to_page((void *)initrd_start)), min_low_pfn); initrd_start = 0; } #endif vmalloc_init(); vfs_caches_init_early(); cpuset_init_early(); page_cgroup_init(); mem_init(); enable_debug_pagealloc(); cpu_hotplug_init(); kmem_cache_init(); debug_objects_mem_init(); idr_init_cache(); setup_per_cpu_pageset(); numa_policy_init(); if (late_time_init) late_time_init(); calibrate_delay(); pidmap_init(); pgtable_cache_init(); prio_tree_init(); anon_vma_init(); #ifdef CONFIG_X86 if (efi_enabled) efi_enter_virtual_mode(); #endif thread_info_cache_init(); cred_init(); fork_init(num_physpages); proc_caches_init(); buffer_init(); key_init(); security_init(); vfs_caches_init(num_physpages); radix_tree_init(); signals_init(); /* rootfs populating might need page-writeback */ page_writeback_init(); #ifdef CONFIG_PROC_FS proc_root_init(); #endif cgroup_init(); cpuset_init(); taskstats_init_early(); delayacct_init(); check_bugs(); acpi_early_init(); /* before LAPIC and SMP init */ ftrace_init(); /* Do the rest non-__init'ed, we're now alive */ rest_init(); } tatic noinline void __init_refok rest_init(void) __releases(kernel_lock) { int pid; kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND); numa_default_policy(); pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES); kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns); unlock_kernel(); /* * The boot idle thread must execute s
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服