1、*第2课时一元一次不等式组的应用会运用一元一次不等式组解决简单的实际问题一、情境导入小明、小红和东东三人在公园玩跷跷板,当小明和小红坐在跷跷板的两端时,小明这一端着地三人一起玩跷跷板时,小红与东东坐在一端,小明被跷起已经知道小红和东东的体重分别为30kg和32kg,同学们,你们能算出小明的体重大约是多少吗二、合作探究探究点:一元一次不等式组的应用【类型一】 分配问题某校志愿者团队在重阳节购置了一批牛奶到“夕阳红敬老院慰问孤寡老人,如果给每个老人分5盒,那么剩下38盒;如果给每个老人分6盒,那么最后一个老人缺乏5盒,但至少分得1盒(1)设敬老院有x名老人,那么这批牛奶共有多少盒(用含x的代数式表
2、示) (2)该敬老院至少有多少个老人最多有多少个老人解析:相等关系:每人分5盒,剩下38盒不等关系:每人分6盒,那么最后一个老人缺乏5盒,但至少分得1盒,即最后一个老人分得的盒数大于或等于1且小于5.解:(1)牛奶数量为(5x38)盒;(2)方法一:根据题意可得1(5x38)6(x1)5,解得39x43.因为x取整数,所以该敬老院至少有40个老人,最多有43个老人方法二:根据题意得解得39x43.因为x取整数,所以该敬老院至少有40个老人,最多有43个老人方法总结:此类问题主要考查应用不等式组解决实际问题时要善于挖掘题中的隐含条件,如此题中“每人分6盒,那么最后一个老人缺乏5盒,但至少1盒的含
3、义是最后一个老人分得的盒数大于或等于1且小于5.【类型二】 方案决策问题某地区发生严重旱情,为了保障人畜饮水平安,急需饮水设备12台现有甲、乙两种设备可供选择,其中甲种设备的购置费用为4000元/台,安装及运输费用为600元/台;乙种设备的购置费用为3000元/台,安装及运输费用为800元/台假设要求购置的费用不超过40000元,安装及运输费用不超过9200元,那么可购置甲、乙两种设备各多少台解析:根据“购置的费用不超过40000元“安装及运输费用不超过9200元作为不等关系列不等式组,求其整数解即可解:设购置甲种设备x台,那么购置乙种设备(12x)台购置设备的费用为4000x3000(12x),安装及运输费用为600x800(12x)根据题意得解得2x4.由于x取整数,所以x2,3,4.故有三种方案:购置甲种设备2台,乙种设备10台;购置甲种设备3台,乙种设备9台;购置甲种设备4台,乙种设备8台方法总结:列不等式组解应用题时,一般只设一个未知数,找出两个或两个以上的不等关系,相应地列出两个或两个以上的不等式组成不等式组求解在实际问题中,大局部情况下应求整数解三、板书设计列一元一次不等式组解应用题的步骤:审:分析题目中的条件和未知条件之间的关系;设:设未知数;列:找出题中的两个不等关系,列出不等式组;解:解不等式组,求出解集;答:检验解集是否合理,是否符合实际情况,作答