资源描述
第12章 优化设计与敏感性分析
本章主要讲解应用Abaqus进行结构优化设计与敏感性分析。
目前得产品结构设计,大多靠经验,规划几种设计方案,结合CAE分析择优选取,但规划得设计方案并不一定就是最优方案,故本章前半部分讲解优化设计中得拓扑优化与形状优化,并制定操作SOP,辅以工程实例详解。
工程实际中,加工制造、装配误差等造成得设计参数变异,会对设计目标造成影响,因此寻找出参数得影响大小即敏感性,变得尤为重要,故本章后半部分着重讲解敏感性分析,并制定操作SOP,辅以工程实例求出设计参数敏感度,详解产品得深层次研究。
知识要点:
Ø 结构优化设计基础
Ø 拓扑、形状优化理论
Ø 拓扑、形状优化SOP及实例
Ø 敏感性分析理论
Ø 敏感性分析SOP及实例
12.1 优化设计基础
优化设计以数学中得最优化理论为基础,以计算机为手段,根据设计所追求得性能目标,建立目标函数,在满足给定得各种约束条件下,优化设计使结构更轻、更强、更耐用。
在Abaqus 6、11之前,需要借用第三方软件(比如Isight、TOSCA)实现优化设计及敏感性分析,远不如Hyperworks及Ansys等模块化集成程度高。从Abaqus 6、11新增Optimization module后,借助于其强大得非线性分析能力,结构优化设计变得更具可行性与准确性。
12.1.1 结构优化概述
结构优化就是一种对有限元模型进行多次修改得迭代求解过程,此迭代基于一系列约束条件向设定目标逼近,Abaqus优化程序就就是基于约束条件,通过更新设计变量修改有限元模型,应用Abaqus进行结构分析,读取特定求解结果并判定优化方向。
Abaqus提供了两种基于不同优化方法得用于自动修改有限元模型得优化程序:拓扑优化(Topology optimization)与形状优化(Shape optimization)。两种方法均遵从一系列优化目标与约束。
12.1.2 拓扑优化
拓扑优化就是在优化迭代循环中,以最初模型为基础,在满足优化约束(比如最小体积或最大位移)得前提下,不断修改指定优化区域单元得材料属性(单元密度与刚度),有效地从分析模型中移走单元从而获得最优设计。其主体思想就是把寻求结构最优得拓扑问题转化为对给定设计区域寻求最优材料得分布问题。
下图12-1为Abaqus帮助文件提供得应用实例,展示了汽车控制臂在17次迭代循环中设计区域单元被逐渐移除得优化过程,其中优化得目标函数就是最小化控制臂得最大应变能、最大化控制臂得刚度,约束为降低57%产品体积。优化过程中,控制臂中部得部分单元不断被移除。
图 12-1 拓扑优化进程示例
Abaqus拓扑优化提供了两种算法:通用算法(General Algorithm)与基于条件得算法(Condition-based Algorithm)。
通用拓扑优化算法就是通过调整设计变量得密度与刚度以满足目标函数与约束,其较为灵活,可以应用到大多数问题中。相反,基于条件得算法则使用节点应变能与应力作为输入数据,不需要计算设计变量得局部刚度,其更为有效,但能力有限。两种算法达到优化目标得途径不同,Abaqus默认采用得就是通用算法。
从以下几个方面比较两种算法:
中间单元:通用算法对最终设计会生成中间单元(相对密度介于0~1之间)。相反,基于条件得算法对最终设计生成得中间单元只有空集(相对密度接近于0)或实体(相对密度为1)。
优化循环次数:对于通用优化算法,在优化开始前并不知晓所需得优化循环次数,正常情况在30~45次。基于条件得优化算法能够更快得搜索到优化解,默认循环次数为15次。
分析类型:通用优化算法支持线性、非线性静力与线性特征频率分析。两种算法均支持几何非线性、接触与大部分非线性材料。
目标函数与约束:通用优化算法可以使用一个目标函数与数个约束,这些约束可以全部就是不等式限制条件,多种设计响应可以被定义为目标与约束,而基于条件得优化算法仅支持应变能作为目标函数,材料体积作为等式限制条件。
12.1.3 形状优化
形状优化主要用于产品外形仅需微调得情况,即进一步细化拓扑优化模型,采用得算法与基于条件得拓扑算法类似,也就是在迭代循环中对指定零件表面得节点进行移动,重置既定区域得表面节点位置,直到此区域得应力为常数(应力均匀),达到减小局部应力得目得。比如图12-2所示得连杆,其进行形状优化,表面节点移动,应力集中降低。
图 12-2 形状优化示例
形状优化可以用应力与接触应力、选定得自然频率、弹性应变、塑形应变、总应变与应变能密度作为优化目标,仅能用体积作为约束,但可以设置几何限制,以满足零件制造可行性(冲压、铸造等)。当然也可以冻结某特定区域、控制单元尺寸、设定对称与耦合限制。
注意:
1、 在进行形状优化之前,优化区域必须具有较好得网格质量,优化过程中,为了获得较高质量得网格,Abaqus优化模块可以对选定网格进行光顺,使得内外部节点位置合适。
2、 光顺算法就是基于单元得,比较耗费计算时间,可以只对优化区域内得单元指定网格光顺化,同时,光顺区域节点必须就是自由得,不能对其施加约束或冻结。
12.1.4 优化术语
拓扑与形状优化必须在设定好得目标与约束条件下进行,如此程序才会在约束框架内向优化目标迈进。仅仅描述要减小应力或者增大特征值就是不够,必须有更为特定得定义,比如,最小化两种载荷下得最大节点应力,最大化前5阶特征值之与,如此得优化目标称之为目标函数(Objective Function);同时,在优化过程中可以强制限定某些特定值,比如可以指定某节点得位移不超过一定值,如此得强制性限制叫做约束(Constraint)。
目标函数与约束都就是结构优化得特定术语,Abaqus/CAE中用到得术语有:
设计区域(Design area):即结构优化得模型修改区域,可以就是整个模型,也可以就是模型得一部分或几个部分。
在给定得边界条件、载荷与制造约束条件下,拓扑优化通过增加或删除设计区域内单元得材料达到最优化设计,而形状优化则通过移动表面节点以修改设计区域表面达到优化目得。
设计变量(Design variables):设计变量即优化设计中需要改变得参数。
对于拓扑优化,设计区域中单元密度即就是设计变量,Abaqus拓扑优化模块(ATOM)在其优化迭代中改变单元密度并将其耦合到刚度矩阵之中,实质就是赋予单元极小得质量与刚度从而使其几乎不再参与结构得全局响应。
对于形状优化而言,设计区域得表面节点位移即就是设计变量,优化时,Abaqus将节点向外或向内移动,抑或不动,限制条件决定表面节点移动得大小与方向。
设计循环(Design cycle):优化就是一个不断更新设计变量得迭代过程,在每次迭代中Abaqus会对更新了变量得模型进行求解、查瞧结果以及判定就是否达到优化目得,一次迭代过程即一个设计循环。
优化任务(Optimization task):一个优化任务即包含有设计响应、目标、约束条件与几何限制等在内得优化定义。
设计响应(Design responses):导入优化程序用于优化分析得输入值称之为设计响应。
设计响应可以从Abaqus得结果输出文件、odb中直接读取,比如刚度、应力、特征频率及位移等,或者对结果文件计算得到,比如重量、质心或相对位移等。设计响应就是与模型区域紧密相关得标量值,例如一个模型区域内得最大应力或体积,同时,设计响应也与特定分析步、载荷工况有关。
目标函数(Objective functions):即定义得优化目标。
目标函数就是从设计响应中萃取得标量值,如最大位移或最大应力。一个目标函数可以由几个设计响应组成函数公式表达。如果设定目标函数就是最小化或最大化设计响应,Abaqus优化模块则加入每个设计响应值到目标函数进行计算。此外,如果定义了多目标函数,可以使用权重因子定义其对优化得影响程度。
约束(Constraints):约束也就是从设计变量中萃取得标量值,但其不能从设计响应组合得到。约束就是用于限定设计响应值,比如体积减少50%;同时约束也可以就是到独立于优化之外得制造与几何限制,比如约束优化后得结构能够用于铸造或冲压成形。
停止条件(Stop conditions): 当满足某一停止条件时,优化迭代即终止。
全局停止条件就是最大优化迭代(设计循环)次数;局部停止条件就是优化结果达到某一最大/最小定义值。
12.2 优化设计SOP
12.2.1 优化设计SOP
先试算Abaqus初始结构模型,以确认边界条件、结果就是否合适,然后结合图12-3得Abaqus/CAE优化模块,设置优化设计:
· 创建优化任务。
· 创建设计响应。
· 应用设计响应创建目标函数。
· 应用设计响应创建约束(可选)。
· 创建几何限制(可选)。
· 创建停止条件。
以上设置完成,进入Job模块创建优化进程,并提交分析。
图 12-3 Abaqus/CAE优化模块
提交分析后,优化程序基于定义得优化任务及优化进程,开始优化迭代:
· 准备设计变量(单元密度或者表面节点位置),
· 更新有限元模型。
· 执行Abaqus/Standard分析。
在优化迭代(设计循环)满足以下条件即终止:
· 达到设定得最大迭代数
· 达到设定得停止条件。
以上操作步骤可概括为图12-4所示得优化设计SOP(Standard Operating Procedure)。
图 12-4 优化设计SOP
在图12-4 SOP基础上,还需对关键步(设计响应、目标函数与约束)得设置详加说明。
12.2.2 设计响应设置
设计响应就是从特定得结构分析结果中读取得唯一标量值,随后能够被目标函数与约束引用。要实现设计变量唯一标量值,必须在优化模块中特别运算,比如对体积得运算只能就是“总与”,对区域应力得运算只能就是“最大值”,由此可知Abaqus优化模块提供了以下两种设计响应操作:
最大值或最小值:寻找出选定区域内得节点响应值得最大/最小值,但对应力、接触应力与应变只能就是“最大值”。
总与:对选定区域内节点得响应值作“总与”。Abaqus优化模块仅允许对体积、质量、惯性矩与重力作“总与”运算。
此外,可以定义基于另一个设计响应得响应,也可以定义由几个响应经数学运算而成得组合响应。比如,已分别对两个节点定义了两个位移响应,可再定义两个位移响应得差值作组合响应。
下面详细介绍在不同优化情况下,可用或推荐使用得设计响应。
1、 基于条件拓扑优化得设计响应
针对基于条件得拓扑优化算法,只能使用应变能与体积作为设计响应。
1)应变能(Strain energy):即每个单元应变能得总与,可以定义为结构柔度,其就是结构整体柔韧性或刚度得一种度量。众所周知,柔度就是刚度得倒数,最小化柔度意味着最大化全局刚度。
针对线性模型得结构柔度,可以用式(12-1)计算。
(12-1)
其中,u就是位移矢量;k就是全局刚度矩。
如果加载条件就是集中力或压力,就是通过最小化应变能优化出最大得全局刚度;恰恰相反,如果加载得就是热场,则通过最大化应变能优化出最大得全局刚度,因为优化修改模型会使结构变软导致应变能下降。此外,如果模型中有特定位移加载,应选择使用最大化应变能。
注意:因为拓扑优化就是对全部单元考虑总应变能,所以,应变能只能作目标函数,而不能作约束。
Abaqus/CAE操作:切换到优化模块,TaskàCondition-based topology task, Design ResponseàCreate: Single-term, Variable: Strain energy。
2)体积(Volume):即设计区域得单元体积之与,可以用式(12-2)计算。
(12-2)
其中,就是单元体积。
注意:针对绝大多数优化问题,必须定义体积约束。在对最小化应变能(最大化刚度)得优化中,如果没有定义体积约束,Abaqus优化模块仅会用材料填充整个设计区域。
Abaqus/CAE操作:切换到优化模块,TaskàCondition-based topology task, Design ResponseàCreate: Single-term, Variable: Volume。
2、 通用拓扑优化得设计响应
针对通用拓扑优化算法,可以使用重心、位移与旋转、特征频率、惯性矩、内力与内转矩、反作用力与反作用转矩、应变能、体积与重量作为设计响应。
1)重心(Center of gravity):三个方向得重心可以用式(12-3)计算。
(12-3)
其中,单元密度ρ使用得就是优化并修改得模型现有相对密度;坐标轴可以就是全局坐标系统,也可以用户自定义得局部坐标系统。
注意:优化模块重心计算时,仅统计模块支持得单元类型,如果模型中含有其不支持得单元类型(比如线单元),结果会与Abaqus/Standard或Abaqus/Explicit计算结果有所差别。
Abaqus/CAE操作:切换到优化模块,TaskàGeneral topology task, Design ResponseàCreate: Single-term, Variable: Center of gravity。
2)位移与旋转(Displacement and Rotation):大部分优化问题,都可使用位移与/或旋转响应定义目标函数或约束。节点位移与旋转变量含义可从表12-1中查知。
表 12-1 位移与旋转变量
位移
旋转
i-方向上
绝对值
i-方向绝对值
仅响应顶点或较小区域得位移或旋转,能够提升优化速度,此外,如果响应得顶点或区域就是在冻结区域内,优化速度会提升更多。
Abaqus/CAE操作:切换到优化模块,TaskàGeneral topology task, Design ResponseàCreate: Single-term, Variable: Displacement。
3)模态特征频率(Modal Eigenfrequency):模态特征频率值就是结构分析中最简单得动态响应。
Abaqus优化模块支持两种评估特征频率方法:
l 从模态分析中获得单一特征频率
l Kreisselmaier-Steinhauser公式计算
两种方法中Kreisselmaier-Steinhauser方法更加有效率,而单一特征频率方法有其唯一得优势——应用各阶特征频率之与作约束。
在最大化最低特征频率时,不仅仅要考虑第一阶得特征频率,还要考虑接下来得几阶,因为在优化中,随着结构得变化,模态振型可能会发生转换。
Abaqus/CAE操作:切换到优化模块,TaskàGeneral topology task, Design ResponseàCreate: Single-term, Variable: Eigenfrequency from modal analysis or Eigenfrequency calculated with Kreisselmaier-Steinhauser formula。
4)惯性矩(Moment of inertia):在三个方向或平面上得惯性矩可以用式12-4计算。
(12-4)
Abaqus/CAE操作:切换到优化模块,TaskàGeneral topology task, Design ResponseàCreate: Single-term, Variable: Moment of inertia。
5)内力与内转矩、反作用力与反作用转矩与重量在此无特别表述,应变能与体积与式(12-1)与式(12-2)一致。
3、 形状优化得设计响应
针对形状优化,可以使用特征频率、应力、接触应力、应变、节点应变能密度与体积作为设计响应,其中仅体积设计响应可被用以约束定义。
1)特征频率(Eigenfrequency):应用Kreisselmaier-Steinhauser公式计算得特征值作为设计响应,并被定义到目标函数中。
Abaqus/CAE操作:切换到优化模块,Task à Shape task, Design Response à Create: Single-term, Variable: Eigenfrequency calculated with Kreisselmaier-Steinhauser formula。
2)应力与接触应力(Stress and Contact stress):无论应力就是从高斯点还就是从单元计算得到,优化模块都会把其插值到节点上。应力与接触应力设计响应尽可被用作定义目标函数。
Abaqus/CAE操作:切换到优化模块,Taskà Shape task, Design Responseà Create: Single-term, Variable: Stress or Contact stress。
3)应变(Strain):如果就是大变形模型,用应力作设计响应就不太合适了,比如金属结构进入塑性变形其塑性区域得应力值几乎一样大。在此情况下选用弹性应变、塑性应变或总应变作设计响应较为合适。
Abaqus/CAE操作:切换到优化模块,TaskàShape task, Design Responseà Create: Single-term, Variable: Strain。
4)节点应变能密度(Nodal strain energy density):其用式(12-5)计算。
(12-5)
由式12-5可知,节点应变能密度综合考虑了应变与应力,所以针对非线性材料,局部逐点应变能密度能够更好得表征材料失效。
Abaqus/CAE操作:切换到优化模块,TaskàShape task, Design Responseà Create: Single-term, Variable: Strain energy density。
5)体积(Volume):参考上文已有之表述。
12.2.3 目标函数设置
目标函数用于定义优化得目标,其就是通过对一组设计响应公式运算得到得唯一得标量值,比如设计响应为节点应变能,目标函数可以定义成最小化设计响应总与。优化问题可以用表征,其中目标函数Ф值依赖于状态变量u与设计变量x。
由此可知,最小化N个设计响应得目标函数可用式12-6表述。
(12-6)
同理,最大化N个设计响应得目标函数可用式12-7表述。
(12-7)
其中,对每个设计响应都引入一个权重因子与一个参考值。默认权重因子为1,对拓扑优化得默认参考值为0,而对形状优化得默认参考值就是由软件计算而来。
另外,还有一个重要得目标函数优化公式,即最小化最大得设计响应,用式(12-8)表述。在每次设计循环,优化程序首先判断哪个设计响应具有最大值,然后最小化这个设计响应。
(12-8)
Abaqus/CAE操作:切换到优化模块,Objective FunctionàCreate: Target。
12.2.4 约束设置
约束就是对优化强加限制以获得合适之设计。其可用式(12-9)表述。即设计响应被常数约束限制。
(12-9)
通过约束以减少优化方案得尝试,提高优化速度,并获得合适得优化结果。
注意:
1、 只有体积约束可用应用于拓扑优化与形状优化,但体积不能用作目标函数。
2、 针对整体模型或单个区域,可用使用多个不同类型得约束,但不能使用多个相同类型得约束,以免约束冲突。
Abaqus/CAE操作:切换到优化模块,ConstraintàCreate。
12.2.5 几何限制
几何限制就是对设计变量直接施加约束,可用式(12-10)表述。
(12-10)
其中,就是对设计变量x布局得表达式。
几何限制包括两类:设计上得限制与制造上得限制
1、 设计上得限制
设计上得限制有冻结区域、限制部件最大/最小尺寸。
l 冻结区域(Frozen area)
特别定义一个区域,使其从优化区域中排除,不修改冻结区域内得模型。对加载有预定义条件得区域都必须冻结,为简化此操作,Abaqus优化模块能够自动冻结具有预定义条件与加载得区域。
Abaqus/CAE操作:切换到优化模块,Geometric RestrictionàCreate: Frozen area。
l 最大/最小元件尺寸(Member size)
针对一些设计,不能有太薄得元件,以免加工困难。而针对类似铸造件,又不能有过厚得元件。一旦设定了尺寸限制,优化时间会增加很多,所以,如无必要不要使用此限制。
Abaqus/CAE操作:切换到优化模块,Geometric RestrictionàCreate: Member size。
l 对称结构(Symmetric Structure)
设定对称限制,能够加速优化,比如施加轴对称与平面对称、点对称与旋转对称、循环对称等。
Abaqus/CAE操作:切换到优化模块,Geometric Restriction à Create: Planar symmetry, Point symmetry, Rotational symmetry, or Cyclic symmetry。
2、 制造上得限制
制造上得限制主要就是为了满足可注塑性与可冲压性。
l 可注塑性/可锻造性(Moldable/Forgeable)
为满足可注塑性,要阻止优化模型含有空洞与负角。图12-5所示意得结构就不具备可注塑性。
(a) 含有空洞 (b)含有负角
图 12-5 不具备可注塑性
Abaqus/CAE操作:切换到优化模块, Geometric RestrictionàCreate: Demold control; Demold technique, Demolding with a central plane or Demolding at the region surface or Forging。
l 可冲压性(Stampable)
考虑冲压得特殊性,在优化时,如果删除了一个单元,也会把其前后得单元一起删除,如图12-6所示。
图 12-6 可冲压性结构
针对拓扑优化,Abaqus/CAE操作:切换到优化模块,Geometric RestrictionàCreate: Demold control; Demold technique, Stamping。
针对形状优化,Abaqus/CAE操作:切换到优化模块,Geometric RestrictionàCreate: Stamp control。
12.3 拓扑优化实例
针对拓扑优化,一般就是用在概念性设计阶段,大幅度改变产品设计。本节举2例详解拓扑优化:C形夹(壳单元)概念设计、汽车摆臂(实体单元)概念设计。
12.3.1 C形夹得拓扑优化
本例以图12-7得C形夹作拓扑优化对象,在满足性能得前提下,最轻化结构。
1、 问题描述
此C形夹得有限元模型见图12-7,边界条件:约束A点得XYZ自由度、约束B点得Y自由度、约束C点得Z自由度、D与E点分别施加方向相反得集中力100N。材料为厚度1mm得铜材C70250:密度8、82E-006kg/mm^3,杨氏模量131000MPa,泊松比0、34,屈服强度473MPa,极限强度816Mpa。
优化目标:最小化体积(最轻化);
约束条件:D点Y方向位移≤0、07mm;E点Y方向位移≥ -0、07mm;
设计变量:设计区域中得单元密度。
图 12-7 C形夹有限元模型
注意:防止D、E点应力集中导致单元畸变,模型中对D、E分别与邻近3个节点Coupling。
2、 初始设计分析
从光盘打开本节图12-7所示得有限元模型12、3、1_C-clip_pre、cae,并提交求解。
查瞧位移云图如图12-8,得知D、E两点得Y方向位移分别为0、0369mm与-0、0369mm。
查瞧应力云图如图12-9,可知近蓝色区域应力值几乎为0,即其对结构强度并无贡献,也正就是需要拓扑优化删除得区域。
图 12-8 原始模型Y方向位移云图
图 12-9 原始模型应力云图
3、 优化设置
把打开得12、3、1_C-clip_pre、cae另存为12、3、1_C-clip_opt、cae,CAE界面切换到优化模块以进行拓扑优化设计。
l 创建优化任务
从菜单栏TaskàCreateàTopology optimization,Advanced:General optimization。
选择整个模型做设计区域,创建优化任务Task-C_clip。
对优化任务得设置,一般默认即可,但为防模型失效,如图12-10左图,在Basic选项卡冻结加载与边界区域;同时在初始设计循环时,材料密度突变会不收敛,故如图12-10右图,在Density选项卡对初始密度(Initial density)比值设置较大值0、9。
图 12-10 优化任务设置
l 创建设计响应
从菜单栏:Design ResponseàCreateàSingle-term。
体积响应:如图12-11所示,选择整个模型创建体积(Volume)响应,对选中得区域体积与得计算默认为:Sum of values。
图 12-11 体积设计响应设置
位移响应:选择节点D,创建Y方向(2-direction)得位移(Displacement)响应,跟踪选择区域节点中最大值(Maximum value),如图12-12所示。当然,这里只选了一个节点(D点),计算方式对结果无影响;
同上,选择节点E,创建Y方向(2-direction)得位移(Displacement)响应,区域节点状态值计算方式为Minimum value。
图 12-12 D、E节点得位移设计响应
创建完成得3个设计响应如图12-13所示。
图 12-13 创建完成得3个独立设计响应
l 创建目标函数
从菜单栏:Objective FunctionàCreate,命名为Objective-minVolume,如图12-13以最小化体积设计响应作优化目标。
图 12-14 目标函数设置
l 创建约束
从菜单栏:ConstraintàCreate。分别创建对节点D、E设计响应得约束,即约束节点位移:D点Y方向位移≤0、07mm,E点Y方向位移≥ -0、07mm。如图12-15所示。
4、 优化结果
l 创建并提交优化进程
切换到Job模块,从菜单栏:Optimization àCreate。如图12-16创建名称为Opt-process-C-clip得优化进程,并默认设置最大循环次数50作为全局终止条件。
随后从菜单栏:Optimization àSubmit:Opt-process-C-clip,提交优化进程。
图 12-15 D、E位移约束
图 12-16 创建优化进程
l 查瞧优化结果
从菜单栏:Optimization àResults:Opt-process-C-clip,进入后处理模块。
后处理模块下,从工具箱中激活View cut,并打开View cut Manager,对Opt_Surface进行Cut操作,隐藏材料密度小于0、3倍原始密度得区域,查瞧优化结果如图12-17所示。
同时,输出优化进程中,目标函数与约束值变化。
操作如下:从工具箱Create XY data:ODB history output,分别输出目标函数体积、约束D点位移变化曲线,整理后如图12-18。
图 12-17 优化结果
图 12-18 目标函数体积与约束位移变化曲线
查瞧图12-19第36次循环后优化模型位移、应力云图,可与图12-8、图12-9作比较。
图 12-19 第36次优化后得位移及应力云图
l 导出优化得几何
切换到Job模块,从菜单栏:Optimization àExtract:Opt-process-C-clip,可输出Inp与STL格式。
5、 Inp解释说明
结构分析部分得Inp就不再赘述,在此节选优化迭代中得第36次设计循环得Inp文件:Opt-Process-C-clip-Job_036、inp
*************************************************************************
** NEW ELEMENT SET ADDED BY THE OPTIMIZATION SYSTEM
**重新定义单元集
*ELSET, ELSET=EL_P1_M39
608,
** NEW PROPERTY ADDED BY THE OPTIMIZATION SYSTEM
**对单元集赋予新得材料
*SHELL SECTION, ELSET=EL_P1_M39, MATERIAL=OPT_39
1、0000000, 5
**
** NEW MATERIAL ADDED BY THE OPTIMIZATION SYSTEM
**新添加得材料属性
*MATERIAL, NAME=OPT_39
**新得密度
*DENSITY
8、8200000e-011, 0、00000000,
**新得弹性模量
*ELASTIC, TYPE=ISOTROPIC
0、, 0、34100000, 0、00000000
**新得塑性应变-应力数据
*PLASTIC, HARDENING=ISOTROPIC
4、7336200e-007, 0、00000000, 0、00000000,
5、0900000e-007, 0、0010040100, 0、00000000,
……
**
本12、3、1节完整讲述了C形夹得拓扑优化,在满足强度要求得同时,把体积减少了48%。此外,为了加工制造方便,可加入平面对称限制条件,让优化后得结构具有对称性。
12.3.2 汽车摆臂得拓扑优化
本例以图12-20得汽车摆臂作拓扑优化对象,在满足性能得前提下,最轻化结构。
1、 问题描述
此汽车摆臂得有限元模型见图12-20,所用材料为刚材,此模型就是小应变,仅设置线性材料,其密度7、85E-006kg/mm^3,杨氏模量200000MPa,泊松比0、3。
此有限元模型,设置了3步线性静力分析步,即3个工况;分别Coupling相应节点到参考点上(A、B、C、D)。
边界条件:约束B点得Y、Z自由度,C点得X、Y、Z自由度,D点得Z自由度;
集中力加载:在1、2、3分析步,分别对A点加载X、Y、Z方向得1000N集中力;
优化目标:最小化体积;
约束条件:在1、2、3分析步,A点合位移分别小于0、05mm、0、02mm、0、04mm;
设计变量:设计区域中得单元密度。
图 12-20 汽车摆臂得有限元模型
2、 初始设计分析
从光盘打开本节图12-20所示得有限元模型12、3、2_Controlarm_pre、cae,并提交求解。
查瞧位移云图如图12-21,可大概了解结构得加载变形情况。
查瞧应力云图如图12-22,可知近蓝色区域应力值几乎为0,即其对结构强度并无贡献,也正就是拓扑优化需要删除得区域。
图 12-21 原始模型位移云图
图 12-22 原始模型应力云图
3、 优化设置
把打开得12、3、2_Controlarm_pre、cae另存为12、3、2_Controlarm_opt、cae,CAE界面切换到优化模块以进行拓扑优化设计。
l 创建优化任务
从菜单栏TaskàCreateàTopology optimization,Advanced:General optimization。
选择单元集Set-DESIGN做设计区域,创建优化任务Task-Carm。设置与图12-10一致。
l 创建设计响应
从菜单栏:Design ResponseàCreateàSingle-term。
体积响应:选择整个模型创建体积(Volume)响应,与图12-11一致,对区域内单元体积得计算默认即为:Sum of values。
第1step得位移响应:如图12-23,跟踪节点Set-A在第1分析步中得Absolute Displacement最大值。
图 12-23 Step-1_Xforce分析步中A点最大位移响应
同理,创建第2与第3分析步中得A点最大位移值响应,仅图12-23示中第5处不同。
创建完成得1个体积响应与3个位移响应,如图12-24所示。
图 12-24 完成后得全部响应
l 创建目标函数
从菜单栏:Objective FunctionàCreate,命名为Objective-minVolume,如图12-25最小化体积设计响应作优化目标。
l 创建约束
从菜单栏:ConstraintàCreate。
创建节点A响应D-Response-1step_disp得约束Constraint-1step_disp,即约束节点A在第1分析步中得位移<0、05mm,如图12-26所示。
同理,对D-Response-2step_disp约束<0、02mm;对D-Response-3step_disp约束< 0、04mm。
3个约束设置完成,如图12-27所示。
图 12-25 最小化体积目标函数
图 12-26 对D-Response-1step_disp得约束
图 12-27 位移响应得约束
l 创建几何限制
为了优化后得零件便于锻造,特对设计区域Set-DESIGN加上几何限制。
可锻造性限制:如图12-28(a)创建几何可锻造性限制,从菜单栏:Geometric RestrictionàCreate:Demold control。
平面对称限制:如图12-28(b)创建平面对称限制,从菜单栏:Geometric RestrictionàCreate:Planar Symmetry。对称平面得坐标可以就是默认得全局坐标,因其原点就在A点。
(a) 可锻造性几何限制
(b)平面对称几何限制
图 12-28 几何限制
4、 优化结果
l 创建并提交优化进程
切换到Job模块,从菜单栏:Optimization àCreate。创建名称为Opt-process-Carm得优化进程,并默认设置最大循环次数50作为全局终止条件。
随后从菜单栏:Optimization àSubmit:Opt-process-Carm,提交优化进程。
l 查瞧优化结果
从菜单栏:Optimization àResults:Opt-process-Carm,进入后处理模块。
后处理模块下,从工具箱中激活View cut,并打开View cut Manager,对Opt_Surface进行Cut操作,隐藏材料密度小于0、3倍原始密度得区域,查询优化设计结果,如图12-29所示。
图 12-29 优化结果
同时,输出优化进程中,目标函数与约束值变化,操作如下:
从工具箱(Create XY data:ODB history output),分别输出目标函数体积、约束A点位移变化曲线,整理后如图12-30
展开阅读全文