收藏 分销(赏)

高考数学知识点总结归纳五篇分享.docx

上传人:二*** 文档编号:4517065 上传时间:2024-09-26 格式:DOCX 页数:8 大小:20KB
下载 相关 举报
高考数学知识点总结归纳五篇分享.docx_第1页
第1页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、本文格式为Word版,下载可任意编辑高考数学学问点总结归纳五篇共享 数学是规律性很强的一门学科,同学想要学好数学,需要知道一些的学习方法,下面就是我给大家带来的数学高考学问点总结,期望能关怀到大家! 数学高考学问点总结1 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不行缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,生疏公理、定理的内容和功能,通过对问题的分析与概括,把握立体几何中解决问题的规律-充分利用线线平行(垂直)、线面平行(垂直)、

2、面面平行(垂直)相互转化的思想,以提高规律思维力气和空间想象力气。 2.判定两个平面平行的方法: (1)依据定义-证明两平面没有公共点; (2)判定定理-证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”; (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”; (3)两个平面平行的性质定理:“假如两个平行平面同时和第三个平面相交,那么它们的交线平行”; (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面; (5)夹在两个平行平面间的平行线段相等; (

3、6)经过平面外一点只有一个平面和已知平面平行。 数学高考学问点总结2 1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)推断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0); (4)若所给函数的解析式较为冗杂,应先化简,再推断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的

4、定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);争辩函数的问题确定要留意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点

5、(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数的周期性 (1)y=f(x)对xR时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数; (4)若y=f(x

6、)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对xR时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5.方程k=f(x)有解kD(D为f(x)的值域); 6.af(x)恒成立af(x)max,;af(x)恒成立af(x)min; 7.(1)(a0,a1,b0,nR+); (2)logaN=(a0,a1,b0,b1); (3)logab的符号由口诀“同正异负”记忆; (4)alogaN=N(a0,a1,N0); 8.

7、推断对应是否为映射时,抓住两点: (1)A中元素必需都有象且; (2)B中元素不愿定都有原象,并且A中不同元素在B中可以有相同的象; 9.能娴熟地用定义证明函数的单调性,求反函数,推断函数的奇偶性。 10.对于反函数,应把握以下一些结论: (1)定义域上的单调函数必有反函数; (2)奇函数的反函数也是奇函数; (3)定义域为非单元素集的偶函数不存在反函数; (4)周期函数不存在反函数; (5)互为反函数的两个函数具有相同的单调性; (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(xB),f-1f(x)=x(xA); 11.处理二次函数的

8、问题勿忘数形结合 二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系; 12.依据单调性 利用一次函数在区间上的保号性可解决求一类参数的范围问题; 13.恒成立问题的处理方法 (1)分别参数法; (2)转化为一元二次方程的根的分布列不等式(组)求解; 数学高考学问点总结3 a(1)=a,a(n)为公差为r的等差数列 通项公式: a(n)=a(n-1)+r=a(n-2)+2r=.=an-(n-1)+(n-1)r=a(1)+(n-1)r=a+(n-1)r. 可用归纳法证明。 n=1时,a(1)=a+(1-1)r=a。成立。 假设n=k时,等差数列的

9、通项公式成立。a(k)=a+(k-1)r 则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+(k+1)-1r. 通项公式也成立。 因此,由归纳法知,等差数列的通项公式是正确的。 求和公式: S(n)=a(1)+a(2)+.+a(n) =a+(a+r)+.+a+(n-1)r =na+r1+2+.+(n-1) =na+n(n-1)r/2 同样,可用归纳法证明求和公式。 a(1)=a,a(n)为公比为r(r不等于0)的等比数列 通项公式: a(n)=a(n-1)r=a(n-2)r2=.=an-(n-1)r(n-1)=a(1)r(n-1)=ar(n-1). 可用归纳法证明等比数列

10、的通项公式。 求和公式: S(n)=a(1)+a(2)+.+a(n) =a+ar+.+ar(n-1) =a1+r+.+r(n-1) r不等于1时, S(n)=a1-rn/1-r r=1时, S(n)=na. 同样,可用归纳法证明求和公式。 数学高考学问点总结4 1、直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180 2、直线的斜率 定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 过两点的直线的斜率公式: 留意下面

11、四点: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90; (2)k与P1、P2的挨次无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 3、直线方程 点斜式: 直线斜率k,且过点 留意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 数学高考学问点总结5 一、函数的定义域的常用求法: 1、分式的分母不等于零; 2、偶次方根的被开方数大于等于零; 3、对数的真数大于零; 4、指数函数和

12、对数函数的底数大于零且不等于1; 5、三角函数正切函数y=tanx中xk+/2; 6、假如函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。 二、函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法 三、函数的值域的常用求法: 1、换元法; 2、配方法; 3、判别式法; 4、几何法; 5、不等式法; 6、单调性法; 7、直接法 四、函数的最值的常用求法: 1、配方法; 2、换元法; 3、不等式法; 4、几何法; 5、单调性法 五、函数单调性的常用结论: 1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)

13、+g(x)在这个区间上也为增(减)函数。 2、若f(x)为增(减)函数,则-f(x)为减(增)函数。 3、若f(x)与g(x)的单调性相同,则fg(x)是增函数;若f(x)与g(x)的单调性不同,则fg(x)是减函数。 4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。 5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。 六、函数奇偶性的常用结论: 1、假如一个奇函数在x=0处有定义,则f(0)=0,假如一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。 2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。 3、一个奇函数与一个偶函数的积(商)为奇函数。 4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。 5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2f(x)+f(-x)+1/2f(x)+f(-x),该式的特点是:右端为一个奇函数和一个偶函数的和。 高考数学学问点总结归纳五篇共享 第 8 页 共 8 页

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服