资源描述
数学人教版五年级下册数学期末试卷及答案.doc
一、选择题
1.把一个正方体切开,分成两个长方体,表面积( )。
A.不变 B.增加了 C.减少了
2.一个长方体玻璃鱼缸长1米,宽5分米,高8分米,小马虎不小心把前面的玻璃打碎了,新配的玻璃面积是( )正合适。
A.0.8平方米 B.8平方分米 C.40平方分米 D.50平方分米
3.下列各组数中,三个连续自然数都是合数的是( )。
A.20、22、24 B.11、12、13 C.8、9、10 D.21、22、23
4.下面的说法错误的是( )。
A.偶数+奇数=奇数
B.被称为“几何之父”的古希腊数学家是欧几里德
C.两个非0自然数的乘积一定是它们的公倍数
D.的分数单位比的分数单位小
5.下面的分数中,( )是最简分数。
A. B. C. D.
6.两根2米长的电线,第一根用去全长的,第二根用去米,剩下的电线( )。
A.第一根长 B.第二根长 C.一样长 D.无法比较
7.有23位男士到宾馆住宿,住3人间和2人间(每个房间不能有空床位),有( )种不同的安排。
A.3 B.4 C.5
8.如下图,把一个六面都涂上颜色的正方体木块切成125个大小相同的小正方体,其中两面涂色的小正方体有( )个。
A.8 B.54 C.36
二、填空题
9.0.7m3=(________)dm3 480mL=(________)L
2.65dm3=(________)L 75分=(________)时(填分数)
10.如下图,A是自然数。若A是最小的奇数,那么B等于(________);若A是最小的质数,那么B等于(________)。
11.从0、3、5、8里,选出两个数字,按要求组成两位数:最小的奇数是(________),最大的偶数是(________),既是5的倍数,又是3的倍数的数是(________)。
12.两个相邻的非零自然数a和b,它们的最大公因数(________),最小公倍数是(________)。
13.红红要把一张长70厘米,宽50厘米的长方形纸剪成若干个同样大小的正方形而没有剩余,剪出的正方形的边长最大是(________)厘米,一共可以剪成(________)个这样的正方形。
14.小明用相同的正方体木块摆出了一个模型,这个模型从三个不同的方向看,符合下图的要求。搭建这个模型需要(________)个正方体木块。
15.把两个棱长的正方体拼成一个长方体,这个长方体的表面积是(______),体积是(______)。
16.有11袋茶叶,其中一袋次品(质量稍轻),其它质量相等,用天平称至少称(________)次能保证找出次品。
三、解答题
17.直接写得数。(结果化成整数或最简分数)
18.脱式计算(能简算的要简算)。
19.解方程。
20.明明上半身长45cm,身高是105cm,明明的上半身长是下半身长的几分之几?
21.五(二)班的同学每周二要去看望军属李奶奶,三班的同学每6天去看望一次,一班的同学每两周去看望一次。如果今年“五·一”劳动节三个班的同学同一天去看望李奶奶,那么,至少再过多少天他们三个班的同学再次同一天去李奶奶家?
22.在“清理白色垃圾,倡导低碳生活”的活动中,五(1)班同学清理塑料垃圾千克,五(2)班同学比五(1)班多清理千克。五(1)班和五(2)班同学一共清理塑料垃圾多少千克?
23.小亮家有一个长方体玻璃鱼缸,从里面量,长8分米,宽3分米,深4分米。一天,小亮不小心把鱼缸的前面打碎了(如图所示)。
(1)如果这种鱼缸的玻璃1.5元/平方分米,小亮把打碎的玻璃重新配一块,需要多少钱?
(2)把这个坏的鱼缸转过来盛水(如图所示)。算一算,用这个坏的鱼缸,最多能盛水多少升?此时与水接触的玻璃面积是多少平方分米?
24.如图,一块长方形铁皮长30厘米,宽20厘米,如果在这块铁皮的四个角都剪下一个边长5厘米的正方形,焊接成一个无盖长方体铁盒(忽略铁皮厚度),将铁盒装满水。
(1)水的体积是多少立方厘米?
(2)如果将盒子里的水倒一部分到下面这个容器中,使铁盒中的水面和这个容器中的水面同样高,这个容器中的水高多少厘米?
25.画一画。
(1)以直线MN为对称轴作图形A的轴对称图形,得到图形B。
(2)将图形B绕点O逆时针旋转90°,得到图形C。
(3)将图形A向右平移8格,再向上平移5格,得到图形D。
26.丁丁将如图所示的长方体石块(a>b>c)放入一圆柱形水槽内,并向水槽内匀速注水,速度为v立方厘米/秒,直到注满水槽为止。石块可以用三种不同的方式完全放人水槽内,如图①~图③所示。在这三种情况下,水槽内的水深h(厘米)与注水时间(秒)的关系如图④~图⑥所示。根据图像完成下列问题:
(1)请分别将三种放置方式的示意图和与之相对应的关系图像用线连起来。
(2)水槽的高=( )厘米。 从三种放置方式的示意图和与之相对应的关系图像中找出这个长方体的长、宽、高,并求出它的体积。
【参考答案】
一、选择题
1.B
解析:B
【分析】
把一个正方体切开,分成两个长方体,表面积增加了两个面,据此分析。
【详解】
把一个正方体切开,分成两个长方体,表面积增加了。
故答案为:B
【点睛】
两个立体图形(比如正方体之间)拼起来,因为面数目减少,所以表面积减少,反之如果切开面数目增加。
2.A
解析:A
【分析】
前面的玻璃,也就是需要计算长方体前面面的面积,即长×高,代入数据计算即可。
【详解】
8分米=0.8米
1×0.8=0.8(平方米)=80(平方分米)
故选择:A。
【点睛】
此题考查了对长方体的认识,明确前面的玻璃指的是长方体的哪个面是解题关键。
3.C
解析:C
【分析】
一个数只有1和它本身两个因数,这个数叫作质数;一个数除了1和它本身以外还有别的因数,这个数叫作合数;质数的因数只有2个,合数的因数最少有3个;据此逐项分析即可。
【详解】
A.20的因数有6个;22的因数有4个;24的因数有8个,所以20、22、24是三个不连续自然数,都是合数;
B.11的因数只有2个;12的因数有6个;13的因数只有2个;所以11、13是质数,12是合数;
C.8的因数有4个;9的因数有3个;10的因数有4个,所以8、9、10是三个连续自然数都是合数;
D.21有4个因数、22有4个因数、23只有两个因数,所以21、22是合数,23是质数。
故答案为:C
【点睛】
熟记50以内的质数可以快速解题。
4.D
解析:D
【分析】
A. 根据奇数、偶数的运算性质进行分析;
B.根据课堂拓展和课外阅读进行分析;
C.举例说明即可;
D.分母是几分数单位就是几分之一。
【详解】
A. 偶数+奇数=奇数,说法正确;
B. 被称为“几何之父”的古希腊数学家是欧几里德,说法正确;
C. 两个非0自然数的乘积一定是它们的公倍数,说法正确;
D. 的分数单位比的分数单位大,选项说法错误。
故答案为:D
【点睛】
本题考查的知识点较多,要综合运用所学知识。
5.C
解析:C
【分析】
最简分数定义:分子、分母只有公因数1的分数,或者说分子和分母互质的分数。
【详解】
A. ,分子、分母有公因数3,不是最简分数;
B. ,分子、分母有公因数2,不是最简分数;
C. ,分子、分母只有公因数1,是最简分数;
D. ,分子、分母有公因数3,不是最简分数。
故答案为:C
【点睛】
关键是理解最简分数的含义,理解互质的意义。
6.B
解析:B
【分析】
一根用去全长的,即用去2米的,是米,再求出剩下的米数;另一根用去米,求出剩下的米数;即可比较大小。此题主要理解两个的区别:一个是分数,是2米的;另一个是具体数量,是米。由此即可解决问题。
【详解】
2﹣2×
=2﹣
=1-(米)
2﹣=(米)
;
答:剩下的铁丝第二根长。
故选B。
7.B
解析:B
【分析】
假设安排1间3人间的,则需要10间2人间的;安排3间3人间的,则需要7间2人间的;安排5间3人间的,则需要4间2人间的;安排7间3人间的,则需要1间2人间的,据此解答即可。
【详解】
可以安排1间3人间的,则需要10间2人间的;
安排3间3人间的,则需要7间2人间的;
安排5间3人间的,则需要4间2人间的;
安排7间3人间的,则需要1间2人间的;
故答案为:B。
【点睛】
本题采用了列举的方法,按顺序列举,做的不重复、不遗漏,也可以用列表的方式解答。
8.C
解析:C
【分析】
因为53=125,所以这个正方体的棱长为5,结合图示,每条棱上各有两面涂色的小正方体3个,则12条棱上共有12×3=36(个)小正方体。
【详解】
53=125
12×3=36(个)
故答案为:C。
【点睛】
要研究表面涂色的小正方体,就要熟悉正方体的特征:它共有12条棱,6个面,8个顶点;其中顶点处的小正方体3面都涂了颜色,所以每条棱上刨去顶点处共有3个两面涂色的小正方体。
二、填空题
9.0.48 2.65
【分析】
根据高级单位化低级单位乘进率,低级单位化高级单位除以进率;
1立方分米=1升,据此可解答。
【详解】
0.7m3=700dm3 480mL=0.48L
2.65dm3=2.65L 75分=时(填分数)
【点睛】
本题考查单位的换算,明确高级单位化低级单位乘进率,低级单位化高级单位除以进率是解题的关键。
10.A
解析:
【分析】
A是自然数。若A是最小的奇数,那么A= 1;把1平均分成了8份,B是其中的7份,则B = ,若A是最小的质数,那么A= 2;把2平均分成了8份,1份是 ,B是其中的7份是 ,据此解答。
【详解】
由分析可知,A是自然数。若A是最小的奇数,那么B等于;若A是最小的质数,那么B等于。
【点睛】
此题考查了分数的意义,明确其中1格表示多少是解题关键。
11.80 30
【分析】
根据奇数与偶数、质数与合数的意义:在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。一个自然数,如果只有1和它本身两个因数,这样的数叫做质数,一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数。再根据2、3、5的倍数特征进行解答即可。
【详解】
从0、3、5、8四个数中选出两个数,按要求组成两位数。
(1)最小的奇数35;
(2)最大的偶数80;
(3)既是5的倍数,又是3的倍数的数30。
【点睛】
此题考查的目的是理解奇数与偶数、质数与合数的意义,解答此题关键是掌握2、3、5的倍数特征。
12.ab
【分析】
任何两个相邻的自然数(0除外)都是互质数,根据“当两个数是互质数时,这两个数的乘积就是它们的最小公倍数,1就是它们的最大公因数。据此进行解答。
【详解】
由分析可知,两个相邻的非零自然数a和b,则它们是互质数,所以它们的最大公因数是1,最小公倍数是它们的乘积ab。
【点睛】
本题考查当两个数是互质数时的最小公倍数的求法,明确它们的乘积就是它们的最小公倍数是关键。
13.35
【分析】
根据题意可知,正方形的边长是长方形长、宽的最大公因数;分别求出长、宽中包含几个正方形的边长,相乘即可求出正方形的个数。
【详解】
70=2×5×7;
50=2×5×5;
所以70和50的最大公因数是2×5=10;
正方形边长最大是10厘米。
(70÷10)×(50÷10)
=7×5
=35(个)
剪出的正方形的边长最大是10厘米,一共可以剪成35个这样的正方形。
【点睛】
此题考查了最大公因数的实际应用,求两个数的最大公因数就是两数公有质因数的乘积。
14.7
【分析】
由“从左面看”可知这个模型有前后2行;由“从正面看”可知这个模型有上下2层,上层最少有2个正方体;由“从上面看”可知这个模型底层有5个正方体;据此解答。
【详解】
综合三视图可以看出这个模型的底层有5个正方体木块,上层有2个正方体木块,因此搭建这个模型需要5+2=7个正方体木块。
【点睛】
本题主要考查根据三视图确定几何体锻炼了学生的空间想象能力和创新思维能力。
15.2
【分析】
将两个正方体拼成长方体,长方体表面积比两个正方体表面积和减少了2个正方形的面;长方体体积是两个正方体体积的和,据此分析。
【详解】
1×1×6×2-1×1×2
=12-2
=1
解析:2
【分析】
将两个正方体拼成长方体,长方体表面积比两个正方体表面积和减少了2个正方形的面;长方体体积是两个正方体体积的和,据此分析。
【详解】
1×1×6×2-1×1×2
=12-2
=10(平方分米)
1×1×1×2=2(立方分米)
【点睛】
两个立体图形(比如正方体之间)拼起来,因为面数目减少,所以表面积减少,但是体积没变。
16.3
【分析】
第一次,把11袋茶叶分成3份:4袋、4袋、3袋,取4袋的两份分别放在天平两侧,若天平平衡,较轻的次品在未取的一份中,若天平不平衡,取较轻的一份继续;
第二次,取含有次品的一份(3袋或4
解析:3
【分析】
第一次,把11袋茶叶分成3份:4袋、4袋、3袋,取4袋的两份分别放在天平两侧,若天平平衡,较轻的次品在未取的一份中,若天平不平衡,取较轻的一份继续;
第二次,取含有次品的一份(3袋或4袋),取2袋分别放在天平两侧,若天平平衡,则次品是未取的那袋或在未取的一份(2袋)中,若天平不平衡,则较轻的为次品或取较轻的一份继续;
第三次,取含有次品的两袋茶叶分别放在天平两侧,天平不平衡,较轻的为次品。
所以用天平至少称3次能保证找出次品。
【详解】
有11袋茶叶,其中一袋次品(质量稍轻),其它质量相等,用天平称至少称3次能保证找出次品。
【点睛】
熟练掌握找次品的解答方法是解答本题的关键,待测物品在分组时,尽量平均分,当不能平均分时,最多和最少只能差1。
三、解答题
17.;;;;
;;;;
【详解】
略
解析:;;;;
;;;;
【详解】
略
18.;
;
【分析】
-(-)根据减法的性质,原式变为:-+,再根据带符号搬家,即原式变为:+-再按照从左到右的顺序计算即可;
+(-)按照运算顺序有括号先算括号里的,然后再算加法即可;
1-(+)按照
解析:;
;
【分析】
-(-)根据减法的性质,原式变为:-+,再根据带符号搬家,即原式变为:+-再按照从左到右的顺序计算即可;
+(-)按照运算顺序有括号先算括号里的,然后再算加法即可;
1-(+)按照运算顺序有括号先算括号里的,然后再算减法即可;
- + 把分数通分成分母相同的,再按照从左到右的顺序计算即可。
【详解】
-(-)
=-+
=+-
=1-
=
+(-)
=+(-)
=+
=+
=
1-(+)
=1-(+)
=1-
=
- +
=-+
=+
=
19.;;
【分析】
根据等式的基本性质,两边同时加上即可;
首先化简,然后根据等式的性质,两边同时乘即可;
根据等式的基本性质:两边同时乘即可。
【详解】
解:
解:
解:
解析:;;
【分析】
根据等式的基本性质,两边同时加上即可;
首先化简,然后根据等式的性质,两边同时乘即可;
根据等式的基本性质:两边同时乘即可。
【详解】
解:
解:
解:
20.【分析】
根据题意,先求出下半身的长,用身高减去上半身长,再用上半身的长除以下半身的长,约分即可解答。
【详解】
45÷(105-45)
=45÷60
=
答:明明上半身长是下半身长的。
【点睛】
解析:
【分析】
根据题意,先求出下半身的长,用身高减去上半身长,再用上半身的长除以下半身的长,约分即可解答。
【详解】
45÷(105-45)
=45÷60
=
答:明明上半身长是下半身长的。
【点睛】
本题考查求一个数占另一个数的几分之几,用除法计算。
21.42天
【分析】
五(二)班的每周二都要去看就是每7天看一次,三班的同学每6天去看一次,一班的同学每两周去看一次就是每14天看一次,今年“五·一”劳动节三个班的同学同一天去看望李奶奶,那下一次就要隔
解析:42天
【分析】
五(二)班的每周二都要去看就是每7天看一次,三班的同学每6天去看一次,一班的同学每两周去看一次就是每14天看一次,今年“五·一”劳动节三个班的同学同一天去看望李奶奶,那下一次就要隔6、7、14的最小公倍数天,才再次同一天去。据此解答。
【详解】
6=2×3,14=2×7,14是7的倍数,
所以7、6、14三个数的最小公倍数是2×3×7=42,
答:至少再过42天他们三个班的同学再次同一天去李奶奶家。
【点睛】
三个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答。
22.3千克
【分析】
先利用加法求出五(2)班清理出来的塑料垃圾,再将其加上五(1)班同学清理的,求出两个班一共清理的塑料垃圾。
【详解】
=(千克)
答:五(1)班和五(2)班同学一共清理塑料垃圾3千
解析:3千克
【分析】
先利用加法求出五(2)班清理出来的塑料垃圾,再将其加上五(1)班同学清理的,求出两个班一共清理的塑料垃圾。
【详解】
=(千克)
答:五(1)班和五(2)班同学一共清理塑料垃圾3千克。
【点睛】
本题考查了分数加法的应用,正确理解题意并列式即可。
23.(1)48元
(2)48升;68平方分米
【分析】
(1)由于前面是一个长8分米,宽4分米的长方形,根据长方形的面积公式:长×宽,由此即可求出它的面积,再乘1.5即可求出需要多少元。
(2)通过图可
解析:(1)48元
(2)48升;68平方分米
【分析】
(1)由于前面是一个长8分米,宽4分米的长方形,根据长方形的面积公式:长×宽,由此即可求出它的面积,再乘1.5即可求出需要多少元。
(2)通过图可知,此时水的量正好是这个鱼缸的容量的一半,根据长方体的体积公式:长×宽×高,算出之后除以2再换算单位即可;根据图可知,水的接触面相当于底面和一个正面的面积,左右两个侧面是一个三角形,加起来相当于一个侧面的长方形的面积,由此即可知道接触玻璃面积相当于长方体表面积的一半。根据公式:长×宽+长×高+宽×高,把数代入公式即可。
【详解】
(1)8×4×1.5
=32×1.5
=48(元)
答:需要48元。
(2)8×3×4÷2
=24×4÷2
=96÷2
=48(立方分米)
48立方分米=48升
8×3+8×4+3×4
=24+32+12
=56+12
=68(平方分米)
答:用这个坏的鱼缸最多能盛48升水;此时与水接触的玻璃面积是68平方分米。
【点睛】
本题主要考查长方体的容积公式以及表面积公式,尤其要注意结合图形仔细的观察。
24.(1)3000立方厘米
(2)厘米
【分析】
(1)这个长方体铁盒的长为30cm,宽为20cm,高为5cm,长×宽×高求出水的体积;
(2)设这个容器中的水高为x厘米,等量关系为:铁盒倒出水的体积=
解析:(1)3000立方厘米
(2)厘米
【分析】
(1)这个长方体铁盒的长为30cm,宽为20cm,高为5cm,长×宽×高求出水的体积;
(2)设这个容器中的水高为x厘米,等量关系为:铁盒倒出水的体积=容器中水的体积,据此列方程解答。
【详解】
(1)30×20×5
=600×5
=3000(立方厘米)
答:水的体积是3000立方厘米。
(2)解:设这个容器中的水高为x厘米,
30×20×(5-x)=10×5×x
12×(5-x)=x
60-12x=x
13x=60
x=
答:这个容器中的水高厘米。
【点睛】
列方程是解答应用题的一种有效的方法,解题的关键是弄清题意,找出应用题中的等量关系。
25.如图:
【解析】
【详解】
略
解析:如图:
【解析】
【详解】
略
26.(1)见详解;
(2)10;540立方厘米
【分析】
(1)由于a>b>c,所以ab>ac>bc,所以①中这个长方体与水槽的接触面最大,刚开始注水时,水位上涨最快,后水位超过c厘米之后,水位上涨速度
解析:(1)见详解;
(2)10;540立方厘米
【分析】
(1)由于a>b>c,所以ab>ac>bc,所以①中这个长方体与水槽的接触面最大,刚开始注水时,水位上涨最快,后水位超过c厘米之后,水位上涨速度减缓;同理,③中这个长方体与水槽的接触面较小,刚开始注水时,水位上涨速度稍低于①,之后水位超过b厘米之后,水位上涨速度也减缓;②中长方体的高恰好等于水槽的高度,所以水位是匀速上涨的。据此连线即可。
(2)观察图片和水位的变化情况,发现水槽的高是10厘米,这个长方体的长宽高分别是10厘米、9厘米和6厘米,据此根据长方体的体积公式直接列式计算即可。
【详解】
(1)
(2)由图可知,水槽的高=10厘米,长方体的长宽高分别是10厘米、9厘米和6厘米。
10×9×6=540(立方厘米)
答:这个长方体的体积是540立方厘米。
【点睛】
本题考查了长方体的体积,长方体的体积等于长乘宽乘高。
展开阅读全文