收藏 分销(赏)

MATLAB实验练习题计算机南邮MATLAB数学实验大作业答案.docx

上传人:二*** 文档编号:4516122 上传时间:2024-09-26 格式:DOCX 页数:13 大小:624KB
下载 相关 举报
MATLAB实验练习题计算机南邮MATLAB数学实验大作业答案.docx_第1页
第1页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、要求:抄题、写出操作命令、运行结果,并根据要求,贴上运行图。1、求的所有根。(先画图后求解)(要求贴图) solve(exp(x)-3*x2,0)ans = -2*lambertw(-1/6*3(1/2) -2*lambertw(-1,-1/6*3(1/2) -2*lambertw(1/6*3(1/2)2、求下列方程的根。1) a=solve(x5+5*x+1,0);a=vpa(a,6)a = 1.10447+1.05983*i -1.00450+1.06095*i -.199936 -1.00450-1.06095*i 1.10447-1.05983*i2)至少三个根 fzero(x*sin

2、(x)-1/2, 3)ans = 2.9726 fzero(x*sin(x)-1/2,-3)ans = -2.9726 fzero(x*sin(x)-1/2,0)ans = -0.74083)所有根 fzero(sin(x)*cos(x)-x2,0)ans = 0 fzero(sin(x)*cos(x)-x2,0.6)ans = 0.70223、求解下列各题:1) sym x; limit(x-sin(x)/x3)ans =1/62) sym x; diff(exp(x)*cos(x),10)ans =(-32)*exp(x)*sin(x)3) sym x; vpa(int(exp(x2),x

3、,0,1/2),17)ans =0.544987104183622224) sym x; int(x4/(25+x2),x)ans =125*atan(x/5) - 25*x + x3/35)求由参数方程所确定的函数的一阶导数与二阶导数。 sym t; x=log(sqrt(1+t2);y=atan(t); diff(y,t)/diff(x,t)ans =1/t6)设函数y=f(x)由方程xy +ey=e所确定,求y(x)。 syms x y;f=x*y+exp(y)-exp(1); -diff(f,x)/diff(f,y)ans =-y/(x + exp(y)7) syms x; y=exp

4、(-x)*sin(2*x); int(y,0,inf)ans =2/58) syms xf=sqrt(1+x);taylor(f,0,9)ans =- (429*x8)/32768 + (33*x7)/2048 - (21*x6)/1024 + (7*x5)/256 - (5*x4)/128 + x3/16 - x2/8 + x/2 + 19) syms x y; y=exp(sin(1/x); dy=subs(diff(y,3),x,2)dy = -0.582610)求变上限函数对变量x的导数。 syms a t; diff(int(sqrt(a+t),t,x,x2)Warning: Exp

5、licit integral could not be found. ans =2*x*(x2 + a)(1/2) - (a + x)(1/2)4、求点(1,1,4)到直线L: 的距离 M0=1,1,4;M1=3,0,1;M0M1=M1-M0;v=-1,0,2;d=norm(cross(M0M1,v)/norm(v)d = 1.09545、已知分别在下列条件下画出的图形:(要求贴图),在同一坐标系里作图 syms x; fplot(1/sqrt(2*pi)*exp(-(x)2)/2),-3,3,r) hold on fplot(1/sqrt(2*pi)*exp(-(x-1)2)/2),-3,3

6、,y) hold on fplot(1/sqrt(2*pi)*exp(-(x+1)2)/2),-3,3,g) hold off,在同一坐标系里作图。 syms x;fplot(1/sqrt(2*pi)*exp(-(x)2)/2),-3,3,r)hold onfplot(1/(sqrt(2*pi)*2)*exp(-(x)2)/(2*22),-3,3,y)hold onfplot(1/(sqrt(2*pi)*4)*exp(-(x)2)/(2*42),-3,3,g)hold off6、画下列函数的图形:(要求贴图)(1) ezmesh(u*sin(t),u*cos(t),t/4,0,20,0,2)(

7、2) x=0:0.1:3;y=x;X Y=meshgrid(x,y);Z=sin(X*Y); mesh(X,Y,Z)(3)ezmesh(sin(t)*(3+cos(u),cos(t)*(3+cos(u),sin(u),0,2*pi,0,2*pi)7、 已知,在MATLAB命令窗口中建立A、B矩阵并对其进行以下操作:(1) 计算矩阵A的行列式的值 A=4,-2,2;-3,0,5;1,5,3; det(A)ans = -158(2) 分别计算下列各式: A=4,-2,2;-3,0,5;1,5,3;B=1,3,4;-2,0,-3;2,-1,1; 2*A-Bans = 7 -7 0 -4 0 13 0

8、 11 5 A*Bans = 12 10 247 -14 -7 -3 0 -8 A.*Bans = 4 -6 8 6 0 -15 2 -5 3 A*inv(B)ans = -0.0000 -0.0000 2.0000 -2.7143 -8.0000 -8.1429 2.4286 3.0000 2.2857 inv(A)*Bans = 0.4873 0.4114 1.0000 0.3671 -0.4304 0.0000 -0.1076 0.2468 0.0000 A*Aans = 24 2 4 -7 31 9 -8 13 36 Aans = 4 -3 1 -2 0 5 2 5 38、 在MATL

9、AB中分别利用矩阵的初等变换及函数rank、函数inv求下列矩阵的秩:(1) 求 rank(A)=? A=1,-6,3,2;3,-5,4,0;-1,-11,2,4; rank(A)ans = 3 (2) 求。 B=3,5,0,1;1,2,0,0;1,0,2,0;1,2,0,2 inv(B)ans = 2.0000 -4.0000 -0.0000 -1.0000 -1.0000 2.5000 0.0000 0.5000 -1.0000 2.0000 0.5000 0.5000 0 -0.5000 0 0.50009、在MATLAB中判断下列向量组是否线性相关,并找出向量组中的一个最大线性无关组。

10、 a1=1 1 3 2a2=-1 1 -1 3a3=5 -2 8 9a4=-1 3 1 7A= a1, a2 ,a3 ,a4 ;R jb=rref(A)a1 = 1 1 3 2a2 = -1 1 -1 3a3 = 5 -2 8 9a4 = -1 3 1 7R = 1.0000 0 0 1.0909 0 1.0000 0 1.7879 0 0 1.0000 -0.0606 0 0 0 0jb = 1 2 3 A(:,jb)ans = 1 -1 5 1 1 -2 3 -1 8 2 3 910、在MATLAB中判断下列方程组解的情况,若有多个解,写出通解。(1)一: A=1,-1,4,2;1,-1,

11、-1,2;3,1,7,-2;1,-3,-12,6; rank(A)ans = 3 rref(A)ans =1 0 0 0 0 1 0 -2 0 0 1 0 0 0 0 0二: A=1,-1,4,2;1,-1,-1,2;3,1,7,-2;1,-3,-12,6; format ratn=4;RA=rank(A)RA = 3 if(RA=n) fprintf(%方程只有零解)else b=null(A,r)endb = 0 2 0 1 syms k X=k*bX = 0 2*k 0k (2) A=2 3 1;1 -2 4;3 8 -2;4 -1 9;b=4 -5 13 -6;B=A b; n=3;

12、RA=rank(A)RA = 2 RB=rank(B)RB =2rref(B)ans = 1 0 2 -1 0 1 -1 2 0 0 0 0 0 0 0 0 format ratif RA=RB&RA=n %判断有唯一解X=Abelseif RA=RB&RA a1=inv(A)a1 = -3/2 1/2 1/2 0 1/2 0 -2 1/2 1 P,R=eig(A)P = -985/1393 -528/2177 379/1257 0 0 379/419 -985/1393 -2112/2177 379/1257 R = -1 0 0 0 2 0 0 0 2 A的三个特征值是: r1=-1,r2

13、=2,r3=2。三个特征值分别对应的特征向量是P1=1 0 1;p2=1 0 4;p3=1 3 112、化方阵为对角阵。 A=2 2 -2;2 5 -4;-2 -4 5;P,D=eig(A)P = -0.2981 0.8944 0.3333 -0.5963 -0.4472 0.6667 -0.7454 0 -0.6667D = 1.0000 0 0 0 1.0000 0 0 0 10.0000 B=inv(P)*A*PB = 1.0000 -0.0000 0.0000 0.0000 1.0000 0.0000 -0.0000 0 10.0000程序说明:所求得的特征值矩阵D即为矩阵A对角化后的

14、对角矩阵,D和A相似。13、求一个正交变换,将二次型化为标准型。 A=5 -1 3;-1 5 -3;3 -3 3; syms y1 y2 y3y=y1;y2;y3;P,D=eig(A)P = 881/2158 985/1393 -780/1351 -881/2158 985/1393 780/1351 -881/1079 0 -780/1351 D = * 0 0 0 4 0 0 0 9 x=P*yx = (6(1/2)*y1)/6 + (2(1/2)*y2)/2 - (3(1/2)*y3)/3 (2(1/2)*y2)/2 - (6(1/2)*y1)/6 + (3(1/2)*y3)/3- (3

15、(1/2)*y3)/3 - (2(1/2)*3(1/2)*y1)/3 f=y1 y2 y3*D*yf =- y12/2251799813685248 + 4*y22 + 9*y3214、设,数列是否收敛?若收敛,其值为多少?精确到6位有效数字。f=inline(x+7/x)/2); x0=3; for i=1:20 x0=f(x0); fprintf(%g,%gn,i,x0);end1,2.666672,2.645833,2.645754,2.645755,2.645756,2.645757,2.645758,2.645759,2.6457510,2.6457511,2.6457512,2.6

16、457513,2.6457514,2.6457515,2.6457516,2.6457517,2.6457518,2.6457519,2.6457520,2.64575该数列收敛于三,它的值是15、设 是否收敛?若收敛,其值为多少?精确到17位有效数字。(注:学号为单号的取,学号为双号的取) f=inline(1/(x8);x0=0;for i=1:20 x0=(x0+f(i); fprintf(%g , %.16fn,i,x0);end1 , 1.00000000000000002 , 1.00390625000000003 , 1.00405866579027594 , 1.0040739

17、2457933845 , 1.00407648457933846 , 1.00407707995351927 , 1.00407725342004488 , 1.00407731302468969 , 1.004077336255262610 , 1.004077346255262611 , 1.004077350920336512 , 1.004077353246016813 , 1.004077354471911514 , 1.004077355149515015 , 1.004077355539699316 , 1.004077355772530017 , 1.0040773559158

18、83518 , 1.004077356006628119 , 1.004077356065508520 , 1.004077356104571116、求二重极限 clear syms x y; f=(log(x+exp(y)/sqrt(x2+y2); fx=limit(f,x,1); fxy=limit(fx,y,0)fxy =log(2)17、已知。 clearsyms x y z; F=exp(x)-x*y*z; Fx= diff(F, x)Fx =exp(x) - y*z Fz= diff(F, z)Fz =-x*y G=-Fx/FzG =(exp(x) - y*z)/(x*y)18、已

19、知函数,求梯度。一: clearsyms x y z; f=x2+2*y2+3*z2+x*y+3*x-3*y-6*z; dxyz=jacobian(f)dxyz = 2*x + y + 3, x + 4*y - 3, 6*z - 6二: clear syms x y z; f=x2+2*y2+3*z2+x*y+3*x-3*y-6*z; gr=jacobian(f)gr = 2*x + y + 3, x + 4*y - 3, 6*z - 619、计算积分,其中由直线围成。 A=int(int (2-x-y),y,x2,x),x,0,1)/2A =11/12020、计算曲线积分,其中曲线。clea

20、rsyms x y z tx=cos(t);y=sin(t);z=t;dx=diff(x,t);dy=diff(y,t);dz=diff(z,t);ds=sqrt(dx2+dy2+dz2);f=z2/(x2+y2);I=int(f*ds,t,0,2*pi)I =(8*2(1/2)*pi3)/321、计算曲面积分,其中。 clear syms x y z a; z=sqrt(a2-x2-y2); f=x+y+z; I=int(int(f,y,0,sqrt(a2-x2),x,0,a)I=1/2*a3+1/4*a3*pi+1/3*a2*(a2)(1/2)+1/3*(-1/2-1/4*pi)*a322

21、、求解二阶微分方程:。 clear syms x y; d_equa=D2y-10*Dy+9*y=exp(2*x)d_equa =D2y-10*Dy+9*y=exp(2*x) Condit= y(0)=6/7,Dy(0)=33/7Condit =y(0)=6/7,Dy(0)=33/7 y1=dsolve( d_equa , Condit , x)y1 =exp(9*x)/2 - exp(2*x)/7 + exp(x)/223、求数项级数的和。 clear syms n; f=1/(n*(n+1); I=symsum(f,n,1,inf)I =124、将函数展开为的幂级数。 clear syms

22、 x; f=1/x; taylor(f,10,x,3)ans =(x - 3)2/27 - x/9 - (x - 3)3/81 + (x - 3)4/243 - (x - 3)5/729 + (x - 3)6/2187 - (x - 3)7/6561 + (x - 3)8/19683 - (x - 3)9/59049 + 2/325、能否找到一个分式线性函数,使它产生的迭代序列收敛到给定的数?用这种办法近似计算。 f=inline(2+x2)/(2*x);x1=2;for i=1:20 x1=f(x1); fprintf(%g,%gn,i,x1);end;1,1.52,1.416673,1.4

23、14224,1.414215,1.414216,1.414217,1.414218,1.414219,1.4142110,1.4142111,1.4142112,1.4142113,1.4142114,1.4142115,1.4142116,1.4142117,1.4142118,1.4142119,1.4142120,1.4142126、函数的迭代是否会产生混沌? x1=0:0.05:0.5;y1=2*x1;x2=0.5:0.05:1;y2=2*(1-x2);figureplot(x1,y1,x2,y2)gtext(2*x)gtext(2*(1-x)27、函数称为Logistic映射,试从“

24、蜘蛛网”图观察它取初值为产生的迭代序列的收敛性,将观察记录填人下表,作出图形。若出现循环,请指出它的周期。(要求贴图)f=inline(3.3*x*(1-x);x=linspace(1,202,202);y=linspace(1,202,202);x(1)=0.5;y(1)=0;x(2)=x(1);y(2)=x(1);for i=1:100x(1+2*i)=x(2*i); x(2+2*i)=f(x(1+2*i); y(1+2*i)=x(2+2*i); y(2+2*i)=y(1+2*i);endplot(x,y,r);hold on;syms x y;y=x; ezplot(x,0,1);ezp

25、lot(f(x),0,1);axis(0,1,0,3.3/4);hold off T=0.35hold onf=inline(3.5*x*(1-x);x=linspace(1,202,202);y=linspace(1,202,202);x(1)=0.5;y(1)=0;x(2)=x(1);y(2)=x(1);for i=1:100 x(1+2*i)=x(2*i);x(2+2*i)=f(x(1+2*i); y(1+2*i)=x(2+2*i); y(2+2*i)=y(1+2*i);endplot(x,y,r);hold on;syms x y;y=x; ezplot(x,0,1);ezplot(f

26、(x),0,1);axis(0,1,0,3.5/4);hold off T=0.4hold onf=inline(3.56*x*(1-x);x=linspace(1,202,202);y=linspace(1,202,202);x(1)=0.5;y(1)=0;x(2)=x(1);y(2)=x(1);for i=1:100 x(1+2*i)=x(2*i); x(2+2*i)=f(x(1+2*i); y(1+2*i)=x(2+2*i); y(2+2*i)=y(1+2*i);endplot(x,y,r);hold on;syms x y;y=x; ezplot(x,0,1);ezplot(f(x),

27、0,1);axis(0,1,0,3.56/4);hold off hold onf=inline(3.568*x*(1-x);x=linspace(1,202,202);y=linspace(1,202,202);x(1)=0.5;y(1)=0;x(2)=x(1);y(2)=x(1);for i=1:100 x(1+2*i)=x(2*i); x(2+2*i)=f(x(1+2*i); y(1+2*i)=x(2+2*i); y(2+2*i)=y(1+2*i);endplot(x,y,r);hold on;syms x y;y=x; ezplot(x,0,1);ezplot(f(x),0,1);ax

28、is(0,1,0,3.568/4);hold on f=inline(3.6*x*(1-x);x=linspace(1,202,202);y=linspace(1,202,202);x(1)=0.5;y(1)=0;x(2)=x(1);y(2)=x(1);for i=1:100 x(1+2*i)=x(2*i);x(2+2*i)=f(x(1+2*i); y(1+2*i)=x(2+2*i); y(2+2*i)=y(1+2*i);endplot(x,y,r);hold on;syms x y;y=x; ezplot(x,0,1);ezplot(f(x),0,1);axis(0,1,0,3.6/4);h

29、old off hold on f=inline(3.84*x*(1-x);x=linspace(1,202,202);y=linspace(1,202,202);x(1)=0.5;y(1)=0;x(2)=x(1);y(2)=x(1);for i=1:100 x(1+2*i)=x(2*i); x(2+2*i)=f(x(1+2*i); y(1+2*i)=x(2+2*i); y(2+2*i)=y(1+2*i);endplot(x,y,r);hold on;syms x y;y=x; ezplot(x,0,1);ezplot(f(x),0,1);axis(0,1,0,3.84/4);hold off

30、表 Logistic迭代的收敛性a3.33.53.563.5683.63.84序列收敛情况不收敛不收敛不收敛不收敛不收敛不收敛28、由函数与构成的二维迭代Martin迭代。现观察其当时取初值为所得到的二维迭代散点图有什么变化。(要求贴图)function Martin (a,b,c N)f=(x,y)(y-sign(x)*sqrt(abs(a*x-c);g=(x)(a-x);m=0;0;for n=1:N m(:,n+1)=f(m(1,n),m(2,n),g(m(1,n);endplot(m(1,:),m(2,:),kx);axis equalMartin(4.52555120,2,-300,

31、500)书上62页29、对,求出平面映射的通项,并画出这些点的散点图。A=4,2;1,3;t=;for i=1:20 x=2*rand(2,1)-1; t(length(t)+1,1:2)=x; for j=1:40x=A*x; t(length(t)+1,1:2)=x;endendplot(t(:,1),t(:,2),*)grid(on)30、对及随机给出的,观察数列.该数列有极限吗?31、若该地区的天气分为三种状态:晴、阴、雨。对应的转移矩阵为:且,试根据这些数据来求出若干天之后的天气状态,并找出其特点(取4位有效数字)。 A1=3/4,1/2,1/4;1/8,1/4,1/2;1/8,1/

32、4,1/4;p=0.5;0.25;0.25;for i=1:20 p(:,i+1)=A1*p(:,i);endpp = Columns 1 through 7 0.5000 0.5625 0.5938 0.6035 0.6069 0.6081 0.6085 0.2500 0.2500 0.2266 0.2207 0.2185 0.2178 0.2175 0.2500 0.1875 0.1797 0.1758 0.1746 0.1741 0.1740Columns 8 through 140.6086 0.6087 0.6087 0.6087 0.6087 0.6087 0.60870.2174

33、 0.2174 0.2174 0.2174 0.2174 0.2174 0.21740.1739 0.1739 0.1739 0.1739 0.1739 0.1739 0.1739 Columns 15 through 21 0.6087 0.6087 0.6087 0.6087 0.6087 0.6087 0.6087 0.2174 0.2174 0.2174 0.2174 0.2174 0.2174 0.2174 0.1739 0.1739 0.1739 0.1739 0.1739 0.1739 0.173932、对于上例中的,求出矩阵的特征值与特征向量,并将特征向量与上例中的结论作对比。

34、 A=3/4 1/2 1/4;1/8 1/4 1/2;1/8 1/4 1/4; P,R=eig(A)P = -0.9094 -0.8069 0.3437 -0.3248 0.5116 -0.8133 -0.2598 0.2953 0.4695R = 1.0000 0 0 0 0.3415 0 0 0 -0.0915特征值是r1=1,r2=0,3415,r3=-0.0915;特征向量是R1=,R2=,R3=对应于特征值1的特征向量P1=-0.9094,-0.3248,-0.2598因为: P=0.6087, 0.2174, 0.1739=-1.494P1结论:属于同一特征值的特征向量可以相差k倍

35、33、编程找出的所有勾股数,并问:能否利用通项表示? for b=1:995 a=sqrt(b+5)2-b2); if(a=floor(a) fprintf(a=%i,b=%i,c=%in,a,b,b+5) end enda=15,b=20,c=25a=25,b=60,c=65a=35,b=120,c=125a=45,b=200,c=205a=55,b=300,c=305a=65,b=420,c=425a=75,b=560,c=565a=85,b=720,c=725a=95,b=900,c=90534、用Monte Carlo方法计算圆周率。cleara=10000;for i=1:a x=rand(); f=inline(1/(1+(x2);F(1,i)=f(x);endjifen=mean(F)jifen

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服