收藏 分销(赏)

丛文龙版21题(理)2009函数及导数.docx

上传人:精**** 文档编号:4508115 上传时间:2024-09-26 格式:DOCX 页数:11 大小:357.53KB 下载积分:8 金币
下载 相关 举报
丛文龙版21题(理)2009函数及导数.docx_第1页
第1页 / 共11页
丛文龙版21题(理)2009函数及导数.docx_第2页
第2页 / 共11页


点击查看更多>>
资源描述
丛文龙版21题(理)2009函数及导数 丛文龙 ////////////////////////////////////////// (2009年安徽理)(19)(本小题满分12分) 已知函数,讨论的单调性. (19)本小题主要考查函数的定义域、利用导数等知识研究函数的单调性,考查分类讨论的思想方法和运算求解的能力。本小题满分12分。 (2009年北京理)18.(本小题共13分) 设函数 (Ⅰ)求曲线在点处的切线方程; (Ⅱ)求函数的单调区间; (Ⅲ)若函数在区间内单调递增,求的取值范围. (2009福建理)20、(本小题满分14分) 已知函数,且 (1) 试用含的代数式表示b,并求的单调区间; (2)令,设函数在处取得极值,记点M (,),N(,),P(), ,请仔细观察曲线在点P处的切线与线段MP的位置变化趋势,并解释以下问题: (I)若对任意的m (, x),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论; (II)若存在点Q(n ,f(n)), x n< m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程) (2009年广东理)20.(本小题满分14分) 已知二次函数的导函数的图像与直线平行,且在处取得极小值.设. (1)若曲线上的点到点的距离的最小值为,求的值; (2)如何取值时,函数存在零点,并求出零点.W.w.w.k.s.5.u.c.o.m (2009年湖北理)21.(本小题满分14分) (注意:在试题卷上作答无效) 在R上定义运算(b、c为实常数)。记,,.令. (Ⅰ)如果函数在处有极什,试确定b、c的值; (Ⅱ)求曲线上斜率为c的切线与该曲线的公共点; (Ⅲ)记的最大值为.若对任意的b、c恒成立,试示的最大值。 (2009年湖南理)19.(本小题满分13分) 某地建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元,距离为米的相邻两墩之间的桥面工程费用为万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其它因素.记余下工程的费用为万元。 (Ⅰ)试写出关于的函数关系式; (Ⅱ)当=640米时,需新建多少个桥墩才能使最小? (2009年江西理)17.(本小题满分12分) 设函数 (1) 求函数的单调区间; (2) 若,求不等式的解集. (2009年辽宁理)(21)(本小题满分12分) 已知函数 (Ⅰ)讨论函数的单调性; (Ⅱ)证明:若,则对任意x,x,xx,有。 (2009全国1理)22. 本小题满分12分。(注意:在试题卷上作答无效) 设函数在两个极值点,且 (I)求满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点的区域; (II)证明: (2009全国2理)22.(本小题满分12分) 设函数有两个极值点,且 (I)求的取值范围,并讨论的单调性; (II)证明: (2009山东理)(21)(本小题满分12分) 两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065. (I)将y表示成x的函数; (Ⅱ)讨论(I)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。 (2009年陕西理)20.(本小题满分12分) 已知函数,其中 若在x=1处取得极值,求a的值; 求的单调区间; (Ⅲ)若的最小值为1,求a的取值范围。 (2009年上海理)22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。 已知函数是的反函数。定义:若对给定的实数,函数与互为反函数,则称满足“和性质”;若函数与互为反函数,则称满足“积性质”。 (1) 判断函数是否满足“1和性质”,并说明理由; (2) 求所有满足“2和性质”的一次函数; (3) 设函数对任何,满足“积性质”。求的表达式。 (2009四川理)21. (本小题满分12分) 已知函数。 (I)求函数的定义域,并判断的单调性; (II)若 (III)当(为自然对数的底数)时,设,若函数的极值存在,求实数的取值范围以及函数的极值。 (2009年天津理)(20)(本小题满分12分) 已知函数其中 (Ⅰ)当时,求曲线处的切线的斜率; (Ⅱ)当时,求函数的单调区间与极值。 本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。满分12分。 (2009年浙江理)20090423 22.(本题满分14分)已知函数,, 其中.w.w.w.k.s.5.u.c.o.m (I)设函数.若在区间上不单调,求的取值范围; (II)设函数 是否存在,对任意给定的非零实数,存在惟一 的非零实数(),使得成立?若存在,求的值;若不存 在,请说明理由. (2009年重庆理)18.(本小题满分13分,(Ⅰ)问5分,(Ⅱ)问8分) 设函数在处取得极值,且曲线在点处的切线垂直于直线. (Ⅰ)求的值; (Ⅱ)若函数,讨论的单调性. (2009年江西)19.(本小题满分16分) 按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为和,则他对这两种交易的综合满意度为. 现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为元和元,甲买进A与卖出B的综合满意度为,乙卖出A与买进B的综合满意度为 (1) 求和关于、的表达式;当时,求证:=; (2) 设,当、分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? (3) 记(2)中最大的综合满意度为,试问能否适当选取、的值,使得和同时成立,但等号不同时成立?试说明理由。 (4) 求和关于、的表达式;当时,求证:=; (5) 设,当、分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? (6) 记(2)中最大的综合满意度为,试问能否适当选取、的值,使得和同时成立,但等号不同时成立?试说明理由。 (2009年江西)20.(本小题满分16分) 设为实数,函数. (1) 若,求的取值范围; (2) 求的最小值; (3) 设函数,直接写出(不需给出演算步骤)不等式的解集. 11
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服