1、一次函数与反比例函数的应用题型解析华师大版八年级下册第17章一次函数与反比例函数应用题专训一、利用图象求解析式试题1、(2015辽宁省朝阳,第23题10分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用)
2、,求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案考点:一次函数的应用专题:应用题分析:(1)利用待定系数法分别求出当0a4和当a4时,b关于a的函数解析式;(2)由于1x3,则到A公司的运输费用满足b=3a,到B公司的运输费用满足b=5a8,利用总费用=购买铵肥费用+运输费用得到y=750x+3mx+(8x)700+5(8x)82m,然后进行整理,再利用一次函数的性质确定费用最低的购买方案解答:解:(1)当0a4时,设b=ka,把(4,12)代入得4k=12,解得k=3,所以b=3a;当a4,设b=ma+n,把(4,12),(8,32)代入得,解得,所以b=5a8;(2
3、)1x3,y=750x+3mx+(8x)700+5(8x)82m=(507m)x+5600+64m,当m时,到A公司买3吨,到B公司买5吨,费用最低;当m时,到A公司买1吨,到B公司买7吨,费用最低点评:本题考查了一次函数的应用:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际;解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数试题2、(2015辽宁省盘锦,第42题14分)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,1
4、0人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示(1)a=6,b=8;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人? 考点:一次函数的应用分析:(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值;(2)利用待定系数法求正
5、比例函数解析式求出y1,分x10与x10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50n),然后分0n10与n10两种情况,根据(2)的函数关系式列出方程求解即可解答:解:(1)由y1图象上点(10,480),得到10人的费用为480元,a=10=6;由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,b=10=8;(2)设y1=k1x,函数图象经过点(0,0)和(10,480),10k1=480,k1=48,y1=48x;0x10时,设y2=k2x,函数图象经过点(0,0)和(10,800),10
6、k2=800,k2=80,y2=80x,x10时,设y2=kx+b,函数图象经过点(10,800)和(20,1440),y2=64x+160;y2=;(3)设A团有n人,则B团的人数为(50n),当0n10时,48n+80(50n)=3040,解得n=30(不符合题意舍去),当n10时,48n+64(50n)+160=3040,解得n=20,则50n=5020=30答:A团有20人,B团有30人故答案为:6,8点评:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论试题3、(2015齐齐哈尔,第25题8分)
7、甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地乙车从B地直达A地,两车同时到达A地甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是60千米/时,t=3小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米考点: 一次函数的应用分析: (1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程速度=时间,用两地之间的距离除以
8、乙车的速度,求出乙车到达A地用的时间是多少;最后根据路程时间=速度,用两地之间的距离除以甲车往返AC两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t的值是多少即可(2)根据题意,分3种情况:当0x3时;当3x4时;4x7时;分类讨论,求出甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围即可(3)根据题意,分3种情况:甲乙两车相遇之前相距120千米;当甲车停留在C地时;两车都朝A地行驶时;然后根据路程速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可解答: 解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(3602)(4806
9、011)=7206=120(千米/小时)t=360120=3(小时)(2)当0x3时,设y=k1x,把(3,360)代入,可得3k1=360,解得k1=120,y=120x(0x3)当3x4时,y=3604x7时,设y=k2x+b,把(4,360)和(7,0)代入,可得解得y=120x+840(4x7)(3)(48060120)(120+60)+1=300180+1=(小时)当甲车停留在C地时,(480360+120)60=2406=4(小时)两车都朝A地行驶时,设乙车出发x小时后两车相距120千米,则60x120(x1)360=120,所以48060x=120,所以60x=360,解得x=6
10、综上,可得乙车出发后两车相距120千米故答案为:60、3点评: (1)此题主要考查了一次函数的应用问题,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际(2)此题还考查了行程问题,要熟练掌握速度、时间和路程的关系:速度时间=路程,路程时间=速度,路程速度=时间试题4、(2015吉林,第22题7分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示(1)当4x12时
11、,求y关于x的函数解析式;(2)直接写出每分进水,出水各多少升考点: 一次函数的应用分析: (1)用待定系数法求对应的函数关系式;(2)每分钟的进水量根据前4分钟的图象求出,出水量根据后8分钟的水量变化求解解答: 解:(1)设当4x12时的直线方程为:y=kx+b(k0)图象过(4,20)、(12,30),解得:,y=x+15 (4x12);(2)根据图象,每分钟进水204=5升,设每分钟出水m升,则 588m=3020,解得:m=故每分钟进水、出水各是5升、升点评: 此题考查了一次函数的应用,解题时首先正确理解题意,然后根据题意利用待定系数法确定函数的解析式,接着利用函数的性质即可解决问题试
12、题5、(2014舟山,第22题10分)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k0)刻画(如图所示)(1)根据上述数学模型计算:喝酒后几时血液中的酒精含量达到最大值?最大值为多少?当x=5时,y=45,求k的值(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由
13、考点:二次函数的应用;反比例函数的应用分析:(1)利用y=200x2+400x=200(x1)2+200确定最大值;直接利用待定系数法求反比例函数解析式即可;(2)求出x=11时,y的值,进而得出能否驾车去上班解答:解:(1)y=200x2+400x=200(x1)2+200,喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);当x=5时,y=45,y=(k0),k=xy=455=225;(2)不能驾车上班;理由:晚上20:00到第二天早上7:00,一共有11小时,将x=11代入y=,则y=20,第二天早上7:00不能驾车去上班点评:此题主要考查了反比例函数与二次函数综合应用
14、,根据图象得出正确信息是解题关键二、利用表格求函数解析式试题1、(2015青海,第25题8分)某玩具商计划生产A、B两种型号的玩具投入市场,初期计划生产100件,生产投入资金不少于22400元,但不超过22500元,且资金要全部投入到生产这两种型号的玩具假设生产的这两种型号玩具能全部售出,这两种玩具的生产成本和售价如表:型号AB成本(元)200240售价(元)250300(1)该玩具商对这两种型号玩具有哪几种生产方案?(2)该玩具商如何生产,就能获得最大利润?考点:一次函数的应用;一元一次不等式组的应用分析:(1)设该厂生产A型挖掘机x台,则生产B型挖掘机100x台,由题意可得:2240020
15、0x+240(100x)22500,求解即得;(2)计算出各种生产方案所获得的利润即得最大利润方案解答:解:(1)设该厂生产A型挖掘机x台,则生产B型挖掘机(100x)台,由“该厂所筹生产资金不少于22400万元,但不超过22500万元”和表中生产成本可得:22400200x+240(100x)22500,37.5x40,x为整数,x取值为38、39、40故有三种生产方案即:第一种方案:生产A型挖掘机38台,生产B型挖掘机62台;第二种方案:生产A型挖掘机39台,生产B型挖掘机61台;第三种方案:生产A型挖掘机40台,生产B型挖掘机60台(2)三种方案获得的利润分别为:第一种方案:38(250
16、200)+62(300240)=5620;第二种方案:39(250200)+61(300240)=5610;第三种方案:40(250200)+60(300240)=5600故生产A型挖掘机38台,生产B型挖掘机62台的方案获得利润最大点评:本题考查了一次函数的应用一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系试题2、(2015天津,第23题10分)(2015天津)1号探测气球从海拔5m处出发,以lm/min的速度上升与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min设气球球上升时间为xmin (0x5
17、0)()根据题意,填写下表:上升时间/min1030x1号探测气球所在位置的海拔/m1535x+52号探测气球所在位置的海拔/m20300.5x+15()在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;()当30x50时,两个气球所在位置的海拔最多相差多少米?考点:一次函数的应用分析:()根据“1号探测气球从海拔5m处出发,以lm/min的速度上升与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升”,得出1号探测气球、2号探测气球的函数关系式;()两个气球能位于同一高度,根据题意列出方程,即可解答;()由题意,可知1号气
18、球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在位置的海拔相差ym,则y=(x+5)(0.5x+15)=0.5x10,根据x的取值范围,利用一次函数的性质,即可解答解答:解:()根据题意得:1号探测气球所在位置的海拔:m1=x+5,2号探测气球所在位置的海拔:m2=0.5x+15;当x=30时,m1=30+5=35;当x=10时,m2=5+15=20,故答案为:35,x+5,20,0.5x+15()两个气球能位于同一高度,根据题意得:x+5=0.5x+15,解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度()当30x50时,由题意,可知1号气球所
19、在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在位置的海拔相差ym,则y=(x+5)(0.5x+15)=0.5x10,0.50,y随x的增大而增大,当x=50时,y取得最大值15,答:两个气球所在位置海拔最多相差15m点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数解析式试题3、(2015湖北十堰,第23题8分)为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过
20、15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种)x(亩)20253035z(元)1700160015001400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0x20时,求小王家总共获得的利润w(元)的最大值考点:一次函数的应用分析:(1)根据图表的性质,可以得出P关于x的函数关系式和出x的取值范围(2)根据利润=亩数每亩利润,可得当0x15时 当15x20时,利润的函数式,即可解题;解答:解:
21、(1)观察图表的数量关系,可以得出P关于x的函数关系式为:P=(2)利润=亩数每亩利润,当0x15时,W=1800x+1380(40x)+2400=420x+55200;当x=15时,W有最大值,W最大=6300+55200=61500;当15x20,W=20x+2100+1380(40x)+2400=1400x+59700;1400x+5970061500;x=15时有最大值为:61500元点评:本题主要考查了一次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是一次函数的性质试题4、(2015辽宁铁岭)(第24题)某蔬菜经销商去蔬菜生产基地批发某种蔬菜,
22、已知这种蔬菜的批发量在20千克60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元(1)根据题意,填写如表:蔬菜的批发量(千克)25607590所付的金额(元)125300300360(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?考点:二次函数的应用;一次函数的应用.分析:(1)根据
23、这种蔬菜的批发量在20千克60千克之间(含20千克和60千克)时,每千克批发价是5元,可得605=300元;若超过60千克时,批发的这种蔬菜全部打八折,则9050.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x4),进而利用配方法求出函数最值即可解答:解:(1)由题意知:当蔬菜批发量为60千克时:605=300(元),当蔬菜批发量为90千克时:9050.8=360(元)故答案为:300,360;(2)设该一次函数解析式为y=kx+b(k0),把点(5,90),(6,60)代入,得,解得故该
24、一次函数解析式为:y=30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(30x+240)(x50.8)=30(x6)2+120,当x=6时,当日可获得利润最大,最大利润为120元点评:此题主要考查了一次函数的应用以及二次函数的应用,得出y与x的函数关系式是解题关键三、利用等量关系求函数解析式试题1、(2015,福建南平,23,分)现正是闽北特产杨梅热销的季节,某水果零售商店分两批次从批发市场共购进杨梅40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元(1)设第一、二次购进杨梅的箱数分别为a箱、b箱,求a,b的值;(2)若商店对这4
25、0箱杨梅先按每箱60元销售了x箱,其余的按每箱35元全部售完求商店销售完全部杨梅所获利润y(元)与x(箱)之间的函数关系式;当x的值至少为多少时,商店才不会亏本(注:按整箱出售,利润=销售总收入进货总成本)考点:一次函数的应用;二元一次方程组的应用分析:(1)根据题意得出a、b的方程组,解方程组即可;(2)根据利润=销售总收入进货总成本,即可得出结果;商店要不亏本,则y0,得出不等式,解不等式即可解答:解:(1)根据题意得:,解得:;答:a,b的值分别为10,30;(2)根据题意得:y=60x+35(40x)(1050+3040),y=25x300;商店要不亏本,则y0,25x3000,解得:
26、x12;答:当x的值至少为12时,商店才不会亏本点评:本题考查了二元一次方程组的应用、一次函数的应用;根据题意得出等量关系列出方程组或得出函数关系式或由不等关系得出不等式是解决问题的关键试题2、(2015黄冈,第23题10分)我市某风景区门票价格如图所示黄冈赤壁旅游公司有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120 人,乙团队人数不超过50 人.设甲团队人数为x 人,如果甲、乙两团队分别购买门票,两团队门票款之和为W 元.(1)求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若甲团队人数不超过100 人,请说明甲、乙两团队联合购票比分别购
27、票最多可节约多少钱;(3“) 五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50 人时,门票价格不变;人数超过50 人但不超过100 人时,每张门票降价a 元;人数超过100 人时,每张门票降价2a 元.在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400 元,求a 的值.考点:一次函数的应用;一元二次方程的应用;一元一次不等式的应用 分析:(1)根据甲团队人数为x 人,乙团队人数不超过50 人,得到x70,分两种情况: 当70x100 时,W=70x+80 (120 x )= 10x+9600,当100x 120 时, W=60x+80 (12
28、0 x )= 20x+9600 ,即可解答; (2 )根据甲团队人数不超过100 人,所以x100,由W= 10x+9600,根据70x100, 利用一次函数的性质,当x=70 时,W 最大=8900 (元),两团联合购票需12060=7200 (元),即可解答; (3 )根据每张门票降价a 元,可得W= (70 a )x+80 (120 x )= (a+10 )x+9600 , 利用一次函数的性质,x=70 时,W 最大= 70a+8900 (元),而两团联合购票需120 (60 2a )=7200 240a (元),所以70a+8900 (7200 240a )=3400,即可解答 解答:
29、解:(1)甲团队人数为x 人,乙团队人数不超过50 人, 120 x50, x70, 当70x100 时,W=70x+80 (120 x )= 10x+9600, 当100x 120 时,W=60x+80 (120 x )= 20x+9600 , 综上所述,W= (2 )甲团队人数不超过100 人, x100, W= 10x+9600, 70x100, x=70 时,W 最大=8900 (元), 两团联合购票需 12060=7200 (元), 最多可节约8900 7200=1700 (元) (3 )x100, W= (70 a )x+80 (120 x )= (a+10 )x+9600 , x
30、=70 时,W 最大= 70a+8900 (元), 两团联合购票需 120 (60 2a )=7200 240a (元), 70a+8900 (7200 240a )=3400 , 解得:a=10 点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数解析式,利用一 次函数的性质求得最大值注意确定x 的取值范围 试题3、(2015齐齐哈尔,第27题10分)母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不
31、超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利10元,销售一个B种礼盒可获利18元为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?考点: 一次函数的应用;一元一次方程的应用;一元一次不等式组的应用分析: (1)利用A、B两种礼盒的单价比为2:3,单价和为200元,得出等式求出即可;(2)利用两种礼盒恰好用去9600元,结合(1)中所求,得出等式,利用两种礼盒的数量关系求出即可;(3)首先表示出店主获利,进而利用a,b关系得出符合题
32、意的答案解答: 解:(1)设A种礼盒单价为2x元,B种礼盒单价为3x元,依据题意得:2x+3x=200,解得:x=40,则2x=80,3x=120,答:A种礼盒单价为80元,B种礼盒单价为120元;(2)设购进A种礼盒a个,B种礼盒b个,依据题意可得:,解得:30a36,a,b的值均为整数,a的值为:30、33、36,共有三种方案;(3)设店主获利为w元,则w=10a+(18m)b,由80a+120b=9600,得:a=120b,则w=(3m)b+1200,要使(2)中方案获利都相同,3m=0,m=3,此时店主获利1200元点评: 此题主要考查了一元一次方程的应用以及一次函数的应用和一元一次不
33、等式的应用,根据题意结合得出正确等量关系是解题关键试题4、(2015梧州,第24题8分)梧州市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A、B两种品牌的龟苓膏共1000包(1)若小王按需购买A、B两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销
34、售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本(运算结果取整数)?考点: 一次函数的应用所有分析: (1)设小王需购买A、B两种品牌龟苓膏粉分别为x包、y包,则,据此求出小王购买A、B两种品牌龟苓膏粉分别为多少包即可(2)根据题意,可得y=500+0.820x+25(1000x),据此求出y与x之间的函数关系式即可(3)首先求出小王购买A、B两种品牌龟苓膏粉分别为多少包,然后设A种品牌龟苓膏粉的售价为z元,则B种品牌龟苓膏粉的售价为z+5元,所以125z+875(z+5)20000+81000,据此求出A品牌的龟苓膏粉每包定价不低于多少元时才不亏本即可解答: 解:(1)设小王需购买A、B两种品牌龟苓膏粉分别为x包、y包,则解得小王购买A、B两种品牌龟苓膏粉分别为600包、400包(2)y=500+0.820x+25(1000x)=500+0.8250005x=500+200004x=4x+20500y与x之间的函数关系式是:y=4x+20500(3)由(2),可得20000=4x+20500解得x=125,小王购买A、B两种品牌龟苓膏粉分别为125包、875包,设A种品牌龟苓膏粉的售价为z元,则B种品牌龟苓膏粉的售价为z+5元,125z+875(z+5)20000+81000解得z23.62530