资源描述
第( 3)单元教学目标
第三单元 长方体和正方体
1. 通过观察和操作,认识长方体和正方体的特征以及它们的展开图。
2. 通过实例,了解体积(包括容积)的意义及度量单位(立方米、立方分米、立方厘米、升、毫升),会进行单位之间的换算,感受1 m3、1 dm3、1 cm3以及1 L、1 ml的实际意义。
3. 结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,并能运用所学知识解决一些简单的实际问题。
4. 探索某些实物体积的测量方法。
.重点:
(1)掌握长方体和正方体的特征。
(2)掌握长方体和正方体的体积和表面积的计算方法。
(3)能运用所学知识解决一些简单的实际问题。
.难点:
(1)表面积概念的建立,以及会根据信息求表面积。
(2)体积概念的建立,以及会根据信息求体积,会进行单位间的换算及改写。
(3)体积和容积的区别。
教学内容
长方体的认识
课 时
第 1 节 共 12 节
授课时间
课程标准
1、通过观察、操作,认识长方体、正方体,,认识长方体、正方体的展开图。
2、通过实例了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
3、结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
4、体验某些实物(如土豆等)体积的测量方法。
教学目标
1.通过观察实物和动手操作等教学活动,掌握长方体的特征,形成长方体的概念。
2.理解长方体各面的长和宽与长方体的长、宽、高之间的关系。
3.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
4.渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点
掌握长方体的特征,形成长方体的概念。
教学难点
建立长正方体的空间观念。
教学准备
师:长方体模型及框架,生:长方体物体
初步教学活动设计
练习设计意图
二次备课
一、复习准备:
(展示教科书第27页的主题图)长城上的砖、高楼、冰箱、衣柜、电视机包装箱都是什么形状的?
像长城上的砖、高楼、衣柜、冰箱这些物体的形状都是长方体的,像电视机包装箱这种物体的形状是正方体。生活中还有哪些物体的形状是长方体的?哪些物体的形状是正方体的?
师:这些物体,它们的大小、高矮都不一样,为什么都是长方体?长方体究竟有什么特征?今天这节课我们就来进一步认识长方体的特征。(教师板书:长方体的认识)
二、学习新课:
(一)认识长方体立体图
观察长方体,一次最多能看到几个面?
如果我们从右前方观察,所看到的这个长方体画出来就是这样。(出示立体图)
看不到的面我们用虚线表示。(补充虚线)
(二)探究长方体的特征。
1、请同学取出自己准备的长方体。
教师提问:请用手摸一摸长方体是由什么围成的?
师:长方体上这种平平的面,我们把它叫做长方体的面。
请用手摸一摸两个面相交处有什么?
师:两个面相交的这条线,我们叫它叫做棱。
请摸一模三条棱相交处有什么?
教师板书:面、棱、顶点
2、参考讨论提纲来研究长方体的特征。
活动一:现在我们已经知道了长方体各部分的名称,那么咱们就从这三个方面入手,通过看一看、数一数、量一量、想一想等方法探讨一下长方体的特征。请同学们拿出课前准备的长方体物品来观察,你能发现什么?将小组同学的发现填在下面的表格中。
请学生汇报时在数面、棱和顶点个数时,要求他们说出数的方法,注意提醒学生用一只拿住长方体不动,按照一定的顺序数,避免重复和遗漏,培养有顺序地观察。在相对面的大小及相对棱的长短研究中,要注意了解学生的研究方法及策略。
面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。
棱:12条,相对的4条棱长度相等。
顶点:8个。
师:请完整地说一说长方体的特征。
活动二:
用学具盒中的塑料小棒和连接器做一个长方体的框架。说一说在制作过程中你有什么发现?
你能回答下面的问题吗?
(1)长方体的12条棱可以分成几组?
(2)相交于同一顶点的三条棱长度相等吗?
我们把相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。习惯上,长方体的位置固定后,把左右方向的棱叫做长,把前后方向的棱叫做宽,和底面垂直的棱叫高.
(3)把长方体横入、竖放、侧放,根据长方体摆放的不同情况,让学生说出它的长、度和高。
指出下面长方体的长、宽、高各是多少厘米?
(4)(出示一个长方体框架)如果已知一个长方体长10厘米,宽6厘米,高5厘米,求做这个长方体框架需要多长的铁丝,应该怎样算?
方法一:将每一条棱长相加;
方法二:将长、宽、高分别乘4,然后将所得的积相加;
方法三:将长、宽、高的和乘4。
问:哪种方法更简便?
三、巩固练习
1、P31第1、3、4题 2、P32第7、6题
板书设计
课后反思
教学内容
正方体的认识
课 时
第 2 节 共 12节
授课时间
课程标准
1、通过观察、操作,认识长方体、正方体,,认识长方体、正方体的展开图。
2、通过实例了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
3、结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
4、体验某些实物(如土豆等)体积的测量方法。
教学目标
1、通过观察实物和动手操作等教学活动,掌握正方体的特征,形成正方体的概念。
2、理解长方体和正方体之间的关系。
3、培养学生的观察操作能力,抽象概括的能力,发展空间观念。
教学重点
掌握正方体的特征,理解正方体和长方体的关系。
教学难点
建立立体图形的概念,形成表象。
教学准备
师:正方体模型、框架;生:正方体纸盒。
初步教学活动设计
练习设计意图
二次备课
一、复习引入
复习长方体的特征(边提问边填写下表)
面 棱 顶点 面的形状 面积 棱长
长 () () () 6个面 相对的 相对的
方 个 条 个 都是长 面完全 棱长度
体 方形 相等 相等
二、探究新知
1、正方体的认识
(图略)这个长方体的长、宽、高各是多少?
想象:当这个长方体的长、宽、高都相等的时候,这个长方体变成了什么?
问:看一看这个长方体与原来长方体比较有什么变化?
(长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体。)
2、对照长方体的特征学生自己研究正方体的特征。
师:正方体具有什么特征呢?我们在研究时应从哪几方面来考虑?
学生讨论、归纳后,教师板书:正方体
面:6个正方形,每个面面积都相等。
棱:12条棱长度都相等。
顶:8个。
3、学生讨论比较长方体和正方体的特征有哪些相同点,有哪些不同点?提示学生可以从面、棱、顶点等方面进行思考。
相同点:面、棱、顶点的数量上都相同;
不同点:在面的形状、面积、棱的长度方面不相同。
教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。(正方体是特殊的长方体)
如果用集体图来表示,应该怎么画?[教师板书集合图]
它表示长方体有的特征正方体都有,但正方体有一部分特征长方体却没有。
4、正方体的棱长和
根据正方体棱长的特点,怎样求正方体的棱长和?
三、巩固反馈:
1、P31第2题。
2、P32第8题
先让学生想像,再让他们动手拼摆一下,由此看到摆成稍大一些的正方体,至少需要8个小正方体,正方体的棱长是2厘米。
3、P32第9题。
通过正方体的水平转动,可以观察到正方体的侧面是A、E、F、C,那么底面就是D,所以I和D是相对的面。同时,正方全水平转动两次,相对的两个面互换了位置,可以得出A和C是相对的在,E和F是相对的面。如果学生无法直观判断,可借助正方体实物对照书上的图转一转,进行判断。
四、补充练习
1、根据图中数据口答。(图略)
(1)长方体的长是( )厘米,宽( )厘米,高( )厘米, 12条棱长的和是()厘米。
(2)这幅图中的几何体是( )体,12条棱长的和是( )分米。
(3)一个正方体的棱长和是48厘米,这个正方体的棱长是( )厘米。
(4)一个长方体的所有棱长和72厘米,已知长是8厘米,宽是6厘米。高是( )厘米。
(5)如图(图略)一个长方体,它的长、宽、高分别是9厘米,3厘米和2.5厘米,它上面的面长是( )厘米,宽是()厘米,左边的面长是( )厘米,宽是( )厘米,前面的面长是( )厘米,宽是( )厘米。
2、判断.正确的在括号里画√,错误的画×。
(1)长方体的6个面中至少有4个面是长方形。 ( )
(2)一个长方体(非正方体)最多有四个面面积相等。( )
(3)长方体中至少有四条棱的长度相等。( )
(4)长方体中最多有8条棱的长度相等。 ( )
(5)相交于一个顶点的三条棱相等的长方体一定是正方体。( )
(6)有6个面、12条棱、8个顶点的物体不是长方体就是正方体。()
(7)长方体是特殊的正方体。 ()
3、这是长方体的三条棱:(单位:厘米)(图略)
①后面的面积是()
②哪两个面的面积是6平方厘米?
③上下两个面的面积和是()
④棱长之和是()
五、课堂总结:
谁来说一说长方体和正方体的特征和它们之间的关系?
板书设计
课后反思
教学内容
长方体的表面积
课 时
第 3 节 共12节
授课时间
课程标准
1.通过观察、操作,认识长方体、正方体,,认识长方体、正方体的展开图。
2.通过实例了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
3.结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
4.体验某些实物(如土豆等)体积的测量方法。
教学目标
1.使学生理解长方体表面积的意义 ,理解并掌握长方体表面积的计算方法, 能够正确地进行计算 ,并能运用所学知识解决一些实际问题 。
2.在探索学习中建立初步的空间观念,发展初步合情推理能力量。
3.培养学生的动手操作能力和共同研究问题的习惯。
4.通过亲身参与探索实践活动,去获得积极的成功的情感体验。
5.体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。
教学重点
长方体表面积计算的基本思路和方法。
教学难点
根据长方体的长、宽、高 ,确定每个面的长、宽是多少。
教学准备
师:长方体表面积展开教具。
生:用附1、附2做成的长方体、正方体盒子、剪刀、尺。
初步教学活动设计
练习设计意图
二次备课
一、复习引入
1、说出长方形面积的计算公式。
2、看图回答。(图略,长4厘米,宽2厘米,高3厘米)
这个长方体的长、宽、高各是多少?
哪些面的的面积相等?
这个长方体上、下两个面的长是(),宽是()。
左、右两个面的长是(),宽是()。
前、后两个在的长是(),宽是()。
二、自主探索
1、分组操作,
探索长方体或正方体表面积的含义、并建立它们的联系。
同学们,你们知道长方体或正方体纸盒展开后是什么形状吗? 现在就请大家利用课前准备的长方体、剪刀,看看把一个长方体纸盒展开是什么形状?
组织学生展示不同的展开图。
大家知道展开前长方体的每个面在展开后是哪个面吗?现在大家在没剪的那个盒子上分别用上、下、前、后、左、右标明6个面,然后与剪开的那个作个对比,在展开图上标出6个面。
哪些面的面积相等?
每个面的长和宽与长方体的长、宽、高有什么关系?
观察展开的正方体图,回答:剪开后的每个面是什么形状?有几个相等的面?
师:长方全或正方体6个面的总面积叫做它的表面积。[板书课题]
2、探索长方体表面积的计算
过渡语:其实,计算长方体或正方体的表面积在日常生活中应用很广泛,如果已知长方体的长、宽、高,能不能计算出它的表面积呢?
出示例1,问:要求至少用多少平方米的硬纸板,实际上就是求这个长方体包装箱的什么?
看教材上的立体图形思考后填书,全班展示不同结果。
方法一:0.7*0.5*2+0.7*0.4*2+0.5*0.4*2=1.66(平方厘米)
方法二: (0.7*0.5+0.7*0.4+0.5*0.4)*2=1.66(平方厘米)
比较上面两种解法有什么不同?它们之间有什么联系?
师:两种方法都是正确的,利用乘法分配律可以把第一种列式变成第二种,第二种方法可以命名大会计算简便些。
三、巩固练习
1、P36第1题。只列式,不计算。
2、P34做一做。
师:在实际生活中,有时不需要计算长方体6个面的总面积,只需要计算出其中几个面的面积。究竟要计算哪几个面的面积,需要根据具体情况而定。
出示做一做后问:要给简易衣柜做布置,要算哪几个面的总面积?少的那个面面积怎样求?
学生独立列式,集体订正。
3、P36第2题
方法指导:先确定一个面做下底面,写下“下”,然后想象折叠的过程,折叠一面确定一个出它是哪面,就在此面标上相应的文字,如果定为是右面,就在此面标上“右”。最后如果能不重复不遗漏的在六个面上分别标上上、下、前、后、左、右,那么这个展示图就能折成正方体,否则就不能。如果学生想像判断困难,可让学生在纸上画出这些展开图,再剪下来,动手折一折。
四、作业:P36第2题
板书设计
课后反思
教学内容
正方体的表面积
课 时
第 4 节 共 12节
授课时间
课程标准
1、通过观察、操作,认识长方体、正方体,,认识长方体、正方体的展开图。
2、通过实例了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
3、结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
4、体验某些实物(如土豆等)体积的测量方法。
教学目标
11、根据正方体的特征,推导出正方体表面积的计算方法。
2、学会解决实际生活中有关正方体表面积的计算问题,培养思维的灵活性。
3、感受数学与生活的密切联系,体会数学学习的价值。
教学重点
正方体表面积的计算方法。
教学难点
解决生活中有关长方体、正方体表面积的计算问题。
教学准备
师:正方体展开图。生:正方体纸盒。
初步教学活动设计
练习设计意图
二次备课
一、复习引入
1、什么是长方体的表面积?
2、计算下图长方体的表面积。(图略。长5分米,宽4分米,高3分米)
3、什么是正方体的表面积?正方体6个面有什么关系?每个面的面积怎样算?
如果给你正方体一条棱的长度,你能算出它的表面积是多少吗?今天,这节课我们就来学习正方体表面积的计算方法。[板书课题]
二、实践探索
1、教学例2
看看昨天自己剪开的正方体表面展开图,大家能说出正方体的表面积如何求吗?
要想知道包装这个礼盒至少要多少包装纸,也就是求什么?
“至少”是什么意思?
学生列式计算,并说说第一步算出的是什么?第二步算出的是什么?(指名板演,集体订正)
2、P35页做一做
让学生独立完成,教师巡视,了解学生的解答情况,看学生是否注意到鱼缸上面没有盖,适时提醒。最后组织学生汇报答案,集体订正,订正。
三、巩固练习
P36第6题 P37第7题
四、作业:P36第4、5、6题。
板书设计
正方体表面积计算
例2 1.2*1.2*6 1.22*6
=1.44*6 =1.44*6
=8.64(平方分米) =8.64(平方分米) 正方体表面积=棱长*棱长*6
课后反思
教学内容
练习六
课 时
第 5 节 共 12节
授课时间
课程标准
1、通过观察、操作,认识长方体、正方体,,认识长方体、正方体的展开图。
2、通过实例了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
3、结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
4、体验某些实物(如土豆等)体积的测量方法。
教学目标
1、 复习长正方体表面积计算,
2、应用这些知识解决生活问题。
教学重点
表面积的计算。
教学难点
表面积知识在实际中的应用。
教学准备
正方体木块27个
初步教学活动设计
练习设计意图
二次备课
一、复习检查:
1、长正方体的特征是什么?
2、什么是长正方体的表面积?怎样计算表面积?
二、基本练习:
1、正方体的棱长是8分米,这个正方体的棱长之和是( )分米,表面积是( )。
2、一个长方体长2米,宽4分米,高4厘米,这个长方体棱长之和是( )分米,表面积是( )平方分米。
3、一个长方体的纸包装箱,长30厘米,宽和高都是20厘米。做10个这样的包装箱,需要纸板多少平方厘米?合多少平方分米?
你想怎样做这道题?(先计算出一个长方体的表面积,再求出10个的表面积,最后要换算单位。)独立做。
师:计算长正方体的表面积一般需要计算六个面的总面积,但在实际生产和生活中,常常只需要计算某几个面的面积之和。解答这类问题时必须根据具体情况进行分析,首先确定需要计算哪几个面的面积,其中有哪几个面是相等的,再决定计算方法。
三、解决实际问题:(先回答求哪几个面,然后只列式不计算。)
1、一座办公楼的门厅有4跟同样的长方体的水泥柱,长和宽都是4分米,柱高4米。在每根柱子的四壁刷上油漆,刷油漆的面积一共有多少平方分米?(计算出四个面的总面积)
2、一个游泳池,长50米,宽40米,平均深1.5米.在池底和四壁抹上一层水泥,如果每平方米用水泥4.5千克,共需要水泥多少千克?(先求五个面的面积和,再求水泥的重量。)
3、一个长方体的大衣柜,长0.9米,宽0.5米,高1.8米,在它的正面和左右两面刷油漆,刷油漆的面积至少是多少平方米?(三个面的面积)
四、指导练习:
1、练习六第10题。
如何把这个长方体木块分成两个棱长为4厘米的正方体?
请同学们分别计算出长方体和2个正方体的表面积,再比较截前和截后的表面积,看有什么变化?
师:截完后,增加两个面,所以2个正方体的表面积和大于原来的长方体。增加的每个面面积都与左(或右)侧面的面积相同,因此增加的表面积就是4*4*2=32(平方厘米)。
2、练习六第9题。
使学生明确:在计算组合图形的表面积时,两个图形重叠部分的面积不能算在表面积里。
3、练习六第11题。
通过引导学生观察得出:三面涂色的小正方体就是大正方体8个角的小正方体,共有8个;两面涂色的小正方体有12个;一面涂色的小正方体有6个,即大正方体6个面最中间的小正方体;没有涂到颜色的小正方体只有中间层的中间1个。
五、全课小结:通过今天的练习,你有收获吗?
五、作业:P37第8、9题。
板书设计
课后反思
教学内容
体积和体积单位
课 时
第 6 节 共 12 节
授课时间
课程标准
1、通过观察、操作,认识长方体、正方体,,认识长方体、正方体的展开图。
2、通过实例了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
3、结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
4、体验某些实物(如土豆等)体积的测量方法。
教学目标
1、使学生理解体积的概念,了解常用的体积单位:立方米、立方分米、立方厘米,对体积单位的大小形成比较明确的表象。
2、能正确区别长度单位、面积单位和体积单位的不同。
3、使学生知道计量一个物体的体积有多大,要看它包含多少个体积单位。
4、 培养学生的比较、观察能力,扩展学生的思维,进一步发展学生的空间观念。
教学重点
1、建立体积概念。
2、认识体积单位。
教学难点
建立体积概念。
教学准备
1立方厘米、1立方分米的教具、1立方米的模型框架、一次性塑料杯、沙子、水、石块、木块、铁球、汽球。生:学具盒。
初步教学活动设计
练习设计意图
二次备课
一、故事引入,激发兴趣
同学们,大家还记得乌鸦喝水的故事吗?谁愿意看图给大家讲一讲。
问:乌鸦是怎么喝到水的?为什么把石子放时瓶子里,瓶子里的水就升上来了。
二、动手实验,引出概念
师:究竟是因为石块有重量,还是因为石块占了空间?咱们通过实验来看一看。
实验一:
出示有水的玻璃杯,在水面处做记号。在水杯中放入一块石头,在水面处做一个黄色记号。拿出石块后,再放入大一些的石块,在水面处做一个红色记号。
观察:在水杯中两次放入大小不同的石块,有什么现象发生?为什么会出现这个现象?说明什么?
师小结:水杯中放入石块后,石块占据了空间,把水面向上挤。水面向上升,石块占据空间大,水面上升得高;石块小占据的空间小,水面上升得低。
实验二:
拿出装满细沙的石子,把细沙倒在一边,把一木块放入杯子里,再把倒出的沙装回杯子里,把杯子的沙倒出,把一些大的木块放入杯子里,再把倒出的沙装回杯子里。
观察思考:出现了什么结果?这说明什么?
师小结:放入小木块,外边剩的沙少;放入大木块,外边剩的沙多。这说明木块也占据杯子的空间。木块大占据空间大,木块小占据的空间小。
师:刚才同学们通过观察实验现象,通过分析思考发现石块、木块都占空间。在我们的生活中,有没有哪些现象也能说明物体占空间呢?
(学生演示吹气使塑料袋膨胀……)
最后师生共同概括出“体积”的含义。[板书]体所占空间的大小叫做物体的体积。
谁能说说什么是电视机的体积?什么是影碟机的体积?什么是手机的体积?它们谁的体积大?谁的体积小?
三、解决问题,引出单位
出示教材39页上的两个长方体,请学生比较。
刚才的电视机、影碟机、手机,大家可以直接通过观察得出它们的大小。对于这两个长方体,你们能比较出它们的大小吗?
看来大家的意见各不相同。为什么前面几件物品你们一下子就能确定,而现在争来争去却不能确定呢?
也就是说需要有一个统一的标准!就像计量长度有长度单位,计量面积有面积单位,计量体积就需要有体积单位。我们学过长度单位用线段表示,面积单位用正方形来表示,你们猜想一下,体积单位应该用什么图形来表示呢?
对!体积单位是用正方体来表示的。常用的体积单位有立方厘米、立方分米、立方米。(板书)请你们猜一猜1 cm3、1 dm3,是多大的正方体?
学生讨论后回答:我们想棱长是1 cm的正方体,体积是1 cm3;棱长是1 dm的正方体,体积是1 dm3。
师:这个猜想对吗?看看书上是怎样说的。
学生看书,证实自己的猜想是对的。
师:请同学们在自己的学具中找出1 cm3的正方体。
学生找到后,说一说自己是怎样找到的。
请你们找找生活中哪些物体的体积大约是1 cm3。
请找出1 dm3的正方体,与1 cm3的正方体比较一下,看它的体积大多少,你能说出身边哪些物体的体积大约是1 dm3吗?
1 m3有多大?
你能想像出1 m3有多大吗?这里有3根1米长的木条做成的一个互成直角的架子,我们把它放在墙角,看看1 m3有多大,它和你想像的大小一样吗?
大家估计一下,它大约能容纳几个同学?验证
哪些物体计算体积时使用立方米比较恰当?
教师小结:常用的体积单位有立方厘米、立方分米和立方米。立方米是较大的体积单位,立方厘米是较小的体积单位。
P40
做一做第1题。
师:我们知道了常用的体积单位,计量一个物体的体积,就要看这个物体含有多少个体积单位。
P40 做一做第2题。说出它们的体积各是多少立方厘米。
四、巩固练习,形成能力
1、选择合适的体积单位填空。
一块橡皮的体积约是8( )
一台录音机的体积约是12( )
运货集装箱的体积约是40( )
电冰箱的体积约是0.27( )
数学课本的体积约是200( )
一个文具盒的体积约是320( )
2、判断:一只长方体纸箱,表面积是52平方分米,体积是24立方分米,它的表面积大。( )
3、摆一摆:用小正方体拼一个体积是8 立方厘米的长方体(或正方体)。(想一想你拼的物体体积是多少?)可以怎么摆?
小结:同一个体积数,可以摆出不同的形状。
五、情感体验,本课小结
常用的体积单位有哪些?哪个体积单位大?哪个体积单位小?
体积单位的用途是什么?
板书设计
课后反思
教学内容
推导长正方体的体积计算方法
课 时
第 7 节 共 12 节
授课时间
课程标准
1、通过观察、操作,认识长方体、正方体,,认识长方体、正方体的展开图。
2、通过实例了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
3、结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
4、体验某些实物(如土豆等)体积的测量方法。
教学目标
1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。
2、通过实验操作等活动,培养学生空间和空间想象能力。
3、能运用长方体、正方体的体积计算公式解决一些简单的实际问题。
教学重点
长正方体体积公式的推导。
教学难点
运用公式计算。
教学准备
24个小正方体木块。(生):1立方厘米学具。
初步教学活动设计
练习设计意图
二次备课
一、复习:
1、什么叫物体的体积?
2、常用的体积单位有哪些?
3、什么是1立方厘米、1立方分米、1立方米?
二、导入新课:
1、导入:
我们知道了每个物体都有一定的体积,我们也知道可以利用数体积单位的方法计算物体的体积。
要知道老师手中的这个长方体和正方体的体积?你有什么办法?(用将它切成1立方厘米(1立方分米)的小正方体后数一数的方法。)
教师拆开长方体,边拆边数一共有多少个1立方厘米。
问:那么原来长方体的体积是多少?(24立方厘米)
说明:用拼开数的方法可以计算出物体的体积。但是在实际生活中,有许多物体是拆不开或不能拆的,如:冰箱,电视机等,怎样计算它的体积呢?他们的体积会和什么有关系呢?这节课我们就来研究长方体和正方体的体积。(板书课题)
2、新课:
(!)推导长方体体积计算公式
请同学们任意取出几个1立方厘米的正方体在小组里合作摆出不同的长方体,边摆边想:你们是怎么摆的?你们摆出的长方体体积是多少?并将摆成的不同形状的长方体的长、宽、高等数据填入表格中,算出每一种摆法用的小正方体总数。(给学生足够的时间进行操作活动,教师巡视,对个别困难的同学进行指导。)
板书学生实验结果
通过拼摆,你发现了什么?
如何计算长方体的体积?
板书:长方体体积=长×宽×高
为什么用长*宽*高就能求出这个长方体的体积呢?(如果学生回答有困难,可以引导他们思考每排个数、排数、层数与长方体的长、宽、高有什么联系。)
师小结:因为每一个小正方体的棱长是1厘米,所以,每排摆几个小正方体,长正好是几厘米;摆几排,宽正好是几厘米;摆几层,高也正好是几厘米。而每排个数*排数求的是一层小正方体的个数,再将一层的个数乘层数就能求出一共有用了多少个正方体木块了。
如果我们用字母V表示体积,a表示长、b表示宽、h表示高,长方体的体积公式该怎么表示? [板书:V=abh]
教学例1。学生独立解答,集体订正。注意计算结果后面要带单位。
(2)推导正方体体积计算公式
正方体与长方体有什么关系?
根据它们之间的关系,你能推导出正方体的体积怎样计算吗?
[板书:正方体体积=棱长×棱长×棱长 V=aaa=a3 ]
三个a边乘,也可以写成a3读作a的立方。
教学例2。学生独立解答,集体订正,注意计算中不能把a3算成了3a。
三、巩固练习
1、判断。
43=12()
0.23=0.2*0.2*0.2()
体积相等的两个长方体,它的形状一定相同。( )
一个长方体,长为5分米,宽4分米,高为3厘米,它的体积是60立方分米。( )
2、看表计算:
四、小结:这节课学会了什么?
怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。
板书设计
课后反思
教学内容
练习七
课 时
第 8 节 共 12节
授课时间
课程标准
1、通过观察、操作,认识长方体、正方体,,认识长方体、正方体的展开图。
2、通过实例了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
3、结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
4、体验某些实物(如土豆等)体积的测量方法。
教学目标
1、在理解底面积的基础上掌握长方体和正方体体积的统一计算公式
2、进一步培养学生归纳整理、抽象概括的能力。
教学重点
1、长、正方体体积的统一计算公式。
2、逆向思维的题可以用方程方法解。
教学难点
几何知识与一般应用题的综合题。
教学准备
长方体模型
初步教学活动设计
练习设计意图
二次备课
一、复习检查:
1、如何计算长正方体的体积?
[板书:长方体的体积=长×宽×高
正方体体积=棱长×棱长×棱长]
2、学校要修长50米,宽42米,的长方形操场。先铺10厘米的三合土,再铺5厘米的煤渣。需要三合土和煤渣各多少立方米?
二、新授:
1、长方体和正方体体积公式的统一
拿出长方体模型,指出哪一个面是底面。
问:长方体或正方体底面的面积叫做底面积。长方体底面面积怎样求?正方体呢?
正方体的另一条棱长实际上也是这个正方体的什么?
大家观察一下体积公式,有什么发现吗?
[板书:
长方体的体积=长×宽×高 正方体体积=棱长×棱长×棱长
底面积 底面积
[板书:长正方体的体积=底面积×高 V =sh]
2、练习
(1)教材43页做一做第2题。
理解横截面积的含义,体会长方体不同放置,说法各不相同。
(2)练习七第8题。
提醒注意:单位的统一。由于最后求的是“多少方”,而1方=1立方米,所以可以把面积单位平方分米换算成平方米,这样便于最后的换算。
三、巩固练习
1、一根长方体水泥柱,体积是1立方米,高是4米,它的底面积是多少?
2、一块长方体的木板,体积是90立方分米。这块木板的长是60分米,宽是3分米。这块木板的厚度是多少分米?
3、用15根规格完全相同的木板堆成一个体积是3.6立方米的长方体。已知每根木板宽0.3米,厚0.2米,求每根木板的长。
4、有一块棱长是10厘米的正方体钢坯,锻造成宽和高都是5厘米的长方体钢材,求长方体钢材的长。
5、将一些棱长为1厘米的小正方体拼成一个长3分米、宽5厘米,高0.8分米的长方体,共需要多少个这样的小正方体?
*6、一个正方体的如果棱长扩大4倍,它的体积扩大()倍。如果底面积扩大4倍,它的体积扩大( )倍。
四、小结:今天,我们又学了哪些知识?你有什么收获?
五、作业:45页7、8题。
板书设计
课后反思
教学内容
体积单位的进率
课 时
第 9 节 共 12 节
授课时间
课程标准
1、通过观察、操作,认识长方体、正方体,,认识长方体、正方体的展开图。
2、通过实例了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
3、结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
4、体验某些实物(如土豆等)体积的测量方法。
教学目标
1、在认识体积单位,知道体积单位与长度单位的联系和区别基础上,学习掌握体积单位间的进率与化、聚方法。
2、学习计算体积的解答方法。
3、培养学生认真审题的习惯,能准确运用单位间的进率进行计算。
教学重点
体积单位的进率。计算物体的重量。
教学难点
体积单位的进率及化聚。
教学准备
课件
初步教学活动设计
练习设计意图
二次备课
一、复习检查:
同学们,我们学过的常用长度单位有哪些?相邻的两个单位间的进率是多少?
常用的面积单位有哪些?相邻的两个单位间的进率是多少?
常用的体积单位有哪些?
我们复习了长度单位和面积单位的进率,那你知道每相邻两个体积单位之间的进率是多少吗?今天我们就来学习体积单位间的进率。[板书课题]
二、新课:
1、体积单位之间的进率:
(1)(出示棱长是1分米的正方体教具),棱长是1分米的正方体,它的体积是多少?[板书:1×1×1=1立方分米]
正方体的棱长是1分米,可以看作是多少厘米?想一想它的体积是多少立方厘米?[ 10×10×10=1000立方厘米
1立方分米和1000立方厘米是同一个正方体的体积吗?
通过刚才的计算你能告诉大家什么?[板书:1立方分米=1000立方厘米]
(2)根据上面的方法,你能推算出1平方米等于多少平方分米吗?
棱长是1米的正方体,体积是1×1×1=1立方米,棱长改用分米作单位:体积是10×10×10=1000立方分米,所以1立方米=1000立方分米(板书)
(3)由此我们可以得出,相邻的体积单位间的进率是多少?
小结: 相邻的体积单位之间的进率是(1000)。
让学生填写46页的表格后比较这三类单位,相邻两个单位间的进率有什么不同?
2学习体积单位间名数的改写。
(1)出示例3,学生自己思考解答,集体订正时要求学生说一说解题思路。
两题的解题方法有什么不同?和以前学过的长度单位、面积单位的转化有什么异同?(方法是一样的,只是进率不同)。
师引导学生将高级单位的名数改写成相邻的低级单位名数的一般方法。[板书:
*进率
高级单位 低级单位
除以进率
强调:不要死记上述规律,只要理解就行。
(2)P47做一做,学习独立练习,订正时说一说解答过程。
(3)教学例2
同学们有没有注意过一
展开阅读全文