资源描述
课时跟踪检测(十九) 统计与概率的应用
A级——学考水平达标练
1.已知某人在投篮时投中的概率为50%,则下列说法正确的是( )
A.若他投100次,一定有50次投中
B.若他投一次,一定投中
C.他投一次投中的可能性大小为50%
D.以上说法均错
解析:选C 概率是指一件事情发生的可能性大小.
2.调查运动员服用兴奋剂的时候,应用Warner随机化应答方法调查300名运动员,得到80个“是”的回答,由此,我们估计服用过兴奋剂的人占这群人的( )
A.3.33% B.53%
C.5% D.26%
解析:选A 应用Warner随机化应答方法调查300名运动员,我们期望有150人回答了第一个问题,而在这150人中又有大约一半的人即75人回答了“是”,其余5个回答“是”的人服用过兴奋剂,由此估计这群人中服用过兴奋剂的大约占≈3.33%.
3.某班有50名同学,其中男女各25名,今有这个班的一个学生在街上碰到一个同班同学,则下列结论正确的是( )
A.碰到异性同学比碰到同性同学的概率大
B.碰到同性同学比碰到异性同学的概率大
C.碰到同性同学和异性同学的概率相等
D.碰到同性同学和异性同学的概率随机变化
解析:选A 碰到异性同学概率为,碰到同性同学的概率为,故选A.
4.蜜蜂包括小蜜蜂和黑小蜜蜂等很多种类,在我国的云南及周边各省都有分布.春暖花开的时候是放蜂的大好季节.养蜂人甲在某地区放养了9 000只小蜜蜂和1 000只黑小蜜蜂,养蜂人乙在同一地区放养了1 000只小蜜蜂和9 000只黑小蜜蜂.某中学生物小组在上述地区捕获了1只黑小蜜蜂.那么,生物小组的同学认为这只黑小蜜蜂是哪位养蜂人放养的比较合理( )
A.甲 B.乙
C.甲和乙 D.以上都对
解析:选B 从放蜂人甲放的蜜蜂中,捕获一只蜜蜂是黑小蜜蜂的概率为,而从放蜂人乙放的蜜蜂中,捕获一只蜜蜂是黑小蜜蜂的概率为,所以,现在捕获的这只黑小蜜蜂是放蜂人乙放养的可能性较大.故选B.
5.在某餐厅内抽取100人,其中有30人在15岁及15岁以下,35人在16岁至25岁之间,25人在26岁至45岁之间,10人在46岁及46岁以上,则从此餐厅内随机抽取1人,此人年龄在16岁至25岁之间的概率约为_______.
解析:16岁至25岁之间的人数为35,频率为0.35,故从此餐厅内随机抽取一人,此人年龄在16岁至25岁之间的概率约为0.35.
答案:0.35
6.某种彩票的抽奖是从写在36个球上的36个号码中随机摇出7个.有人统计了过去中特等奖的号码,声称某一号码在历次特等奖中出现的次数最多,它是一个幸运号码,人们应该买这一号码;也有人说,若一个号码在历次特等奖中出现的次数最少,由于每个号码出现的机会相等,应该买这一号码,你认为他们的说法对吗?
解:体育彩票中标有36个号码的36个球大小、重量是一致的,严格地说,为了保证公平,每次用的36个球,应该只允许用一次,除非能保证用过一次后,球没有磨损、变形.因此,当把这36个球看成每次抽奖中只用了一次时,不难看出,以前抽奖的结果对今后抽奖的结果没有任何影响,上述两种说法都是错的.
7.为调查某森林内松鼠的繁殖情况,可以使用以下方法:先从森林中捕捉松鼠100只,在每只松鼠的尾巴上作上记号,然后再把它们放回森林.经过半年后,再从森林中捕捉50只,假设尾巴上有记号的松鼠共有5只.试根据上述数据,估计此森林内松鼠的数量.
解:设森林内的松鼠总数为n.假定每只松鼠被捕捉的可能性是相等的,从森林中任捕一只,设事件A={带有记号的松鼠},则由古典概型可知,
P(A)=,①
第二次从森林中捕捉50只,有记号的松鼠共有5只,即事件A发生的频数m=5,由概率的统计定义可知,
P(A)≈=,②
由①②可得:≈,所以n≈1 000.
所以,此森林内约有松鼠1 000只.
8.从一批苹果中,随机抽取50个,其重量(单位:g)的频数分布表如下:
分组(重量)
[80,85)
[85,90)
[90,95)
[95,100)
频数/个
5
10
20
15
(1)根据频数分布表计算苹果的重量在[90,95)的频率.
(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.
解:(1)苹果的重量在[90,95)的频率为=0.4.
(2)重量在[80,85)的有4×=1个.
(3)设这4个苹果中[80,85)分段的为1,[95,100)分段的为2,3,4,从中任取两个,可能的情况有:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种. 任取2个,重量在[80,85)和[95,100)中各有1个记为事件A,则事件A包含(1,2),(1,3),(1,4),共3种,故P(A)==.
B级——高考水平高分练
1.某比赛为两运动员制定下列发球规则:
规则一:投掷一枚硬币,出现正面向上,甲发球,反面向上,乙发球;
规则二:从装有2个红球与2个黑球的布袋中随机地取出2个球,如果同色,甲发球,否则乙发球;
规则三:从装有3个红球与1个黑球的布袋中随机地取出2个球,如果同色,甲发球,否则乙发球.
则对甲、乙公平的规则是( )
A.规则一和规则二 B.规则一和规则三
C.规则二和规则三 D.规则二
解析:选B 规则一每人发球的机率都是相等的.规则二所有情况有(红1,红2),(红1,黑1),(红1,黑2),(红2,黑1),(红2,黑2),(黑1,黑2)6种,同色的有2种,所以甲发球的可能性为,不公平.规则三所有情况有(红1,红2),(红1,红3),(红2,红3),(红1,黑),(红2,黑),(红3,黑),同色球有3种,所以两人发球的可能性都是相等的.
2.某商店试销某种商品20天,获得如下数据:
日销售量(件)
0
1
2
3
频数
1
5
9
5
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.则当天商店不进货的概率为________.
解析:商店不进货即日销售量少于2件,显然“日销售量为1件”与“日销售量为0件”不可能同时发生,彼此互斥,分别计算这两个事件发生的频率,将其视作概率,利用概率加法公式求解.记“当天商品销售量为0件”为事件A,“当天商品销售量为1件”为事件B,“当天商店不进货”为事件C,则P(C)=P(A)+P(B)=+=.
答案:
3.玲玲和倩倩是一对好朋友,她俩都想去观看周杰伦的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛两枚同样的一元硬币,如果落地后一正一反,我就去;如果落地后两面一样,你就去!”你认为这个游戏公平吗?答:________.
解析:落地后的情况共有(正,正),(反,反),(正,反),(反,正)四种,所以两人去的概率相同,均为=,故这个游戏是公平的.
答案:公平
投资成功
投资失败
192次
8次
4.某公司有5万元资金用于投资开发项目,如果成功,一年后可获收益12%;一旦失败,一年后将丧失全部资金的50%,右表是去年200例类似项目开发的实施结果.
则该公司一年后估计可获收益的平均数为________元.
解析:应先求出投资成功与失败的概率,再计算收益的平均数.设可获收益为x万元,如果成功,x的取值为5×12%,如果失败,x的取值为-5×50%.
一年后公司成功的概率约为,失败的概率约为,
∴估计一年后公司收益的平均数为
×10 000=4 760(元).
答案:4 760
5.深夜,某市某路段发生一起出租车交通事故.该市有两家出租车公司,红色出租车公司和蓝色出租车公司,其中红色出租车公司和蓝色出租车公司的出租车分别占整个城市出租车的15%和85%. 据现场目击证人说,事故现场的出租车是红色的,并对现场目击证人的辨别能力做了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大嫌疑.警察这一认定公平吗?请说明原因.
解:设该市的出租车有1 000辆,那么依题意可得如下信息:
证人眼中的颜色
(正确率80%)
真实颜色
实际数据
蓝色
红色
蓝色(85%)
850
680
170
红色(15%)
150
30
120
合计
1 000
710
290
从表中可以看出,当证人说出租车是红色时,确定它是红色的概率为≈0.41,而它是蓝色的概率为≈0.59.在实际数据面前,警察仅以目击证人的证词作为推断的依据对红色出租车公司显然是不公平的.
6.如图所示,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:
所用时间(分钟)
10~20
20~30
30~40
40~50
50~60
选择L1的人数
6
12
18
12
12
选择L2的人数
0
4
16
16
4
(1)试估计40分钟内不能赶到火车站的概率;
(2)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.
解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),
∴用频率估计相应的概率为0.44.
(2)设A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.
由频数分布表知,40分钟内赶到火车站,选择不同路径L1,L2的频率分别为(6+12+18)÷60=0.6,(4+16)÷40=0.5,
∴估计P(A1)=0.6,P(A2)=0.5,则P(A1)>P(A2),
因此甲应该选择路径L1.
同理,50分钟内赶到火车站,乙选择路径L1,L2的频率分别为48÷60=0.8,36÷40=0.9,
∴估计P(B1)=0.8,P(B2)=0.9,则P(B1)<P(B2),
因此乙应该选择路径L2.
- 6 -
展开阅读全文