收藏 分销(赏)

2019_2020学年新教材高中数学课时素养评价十增长速度的比较新人教B版必修2.doc

上传人:二*** 文档编号:4491467 上传时间:2024-09-25 格式:DOC 页数:6 大小:2.93MB
下载 相关 举报
2019_2020学年新教材高中数学课时素养评价十增长速度的比较新人教B版必修2.doc_第1页
第1页 / 共6页
本文档共6页,全文阅读请下载到手机保存,查看更方便
资源描述
课时素养评价十  增长速度的比较 (25分钟·50分) 一、选择题(每小题4分,共16分) 1.下列函数中函数值随x的增大而增长,且函数值增长速度最快的是 (  ) A.y=ex B.y=10ln x3 C.y=x10 D.y=10·2x 【解析】选A.因为e>2,所以ex比10·2x增长速度快. 2.有一组实验数据如表所示: t 1 2 3 4 5 s 1.5 5.9 13.4 24.1 37 下列所给函数模型较适合的是 (  ) A.y=logax(a>1) B.y=ax+b(a>1) C.y=ax2+b(a>0) D.y=logax+b(a>1) 【解析】选C.通过所给数据可知s随t的增大而增大,其增长速度越来越快,而A、D中的函数增长速度越来越慢,而B中的函数增长速度保持不变. 3.某林区的森林蓄积量平均每年比上一年增长10.4%,若经过x年可以增长到原来的y倍,则函数y=f(x)的大致图像是下图中的 (  ) 【解析】选D.设某林区的森林蓄积量原有1个单位,则经过1年森林的蓄积量为1+10.4%;经过2年森林的蓄积量为(1+10.4%)2;…;经过x年的森林蓄积量为(1+10.4%)x(x≥0),因为底数110.4%大于1,根据指数增长的特征可知选D. 4.函数f(x)=x3在区间上的平均变化率为 (  ) A.1 B.9 C.19 D.36 【解析】选C.==19. 二、填空题(每小题4分,共8分) 5.若函数f(x)在任意区间内的平均变化率比g(x)=1在同一区间内的平均变化率大,则函数f(x)可以为________,函数f(x)是________函数.  【解析】因为函数g(x)=1在任意区间上的变化率为0,所以函数f(x)在任意区间上的变化率为正数,所以函数f(x)可以为f(x)=x,且函数f(x)是单调递增函数. 答案:x(答案不唯一) 单调递增 6.若函数f(x)在任意区间内的平均变化率均为,且函数的图像过(2,2)点,则f(x)=________.  【解析】因为函数f(x)在任意区间内的平均变化率均为, 则f(x)为一次函数,设f(x)=x+b,又函数图像过点(2,2),所以2=×2+b,所以b=1,所以f(x)=x+1. 答案:x+1 三、解答题(共26分) 7.(12分)已知函数y=log3x,计算在区间,上的平均变化率,并说明在两个区间内函数值变化的快慢. 【解析】==,所以在区间上的平均变化率为log32,在区间上的平均变化率为log3,因为log32>log3,所以函数在区间函数值变化比在区间上慢. 8.(14分)画出函数f(x)=与函数g(x)=x2-2的图像,并比较两者在[0,+∞)上的大小关系. 【解析】函数f(x)与g(x)的图像如下. 根据图像易得:当0≤x<4时,f(x)>g(x); 当x=4时,f(x)=g(x); 当x>4时,f(x)<g(x). (15分钟·30分) 1.(4分)已知f(x)=2x,g(x)=3x,h(x)=x3,则在区间上函数值增长速度的大小顺序是 (  ) A.h(x)<f(x)<g(x) B.h(x)<g(x)<f(x) C.f(x)<g(x)<h(x) D.g(x)<f(x)<h(x) 【解析】选C.因为==2,==6,==7,所以函数在区间上的函数值增长速度的大小顺序是f(x)<g(x)<h(x). 2.(4分)如果函数y=f(x)在区间I上是减函数,而函数在区间I上是增函数,那么称函数y=f(x)是区间I上的“缓减函数”,区间I叫做“缓减区间”.求函数f(x)=x2-2x+1区间的缓减区间. 【解析】对于f(x)=x2-2x+1,对称轴为x=2, 在区间(-∞,2]上是减函数. 对于y==+-2,令g(x)=+, 所以g(x)为奇函数,令0<x1<x2, 则g(x1)-g(x2)=+-=(x1-x2)+-=(x1-x2)+ =(x1-x2)=(x1-x2)·,当x1,x2∈(0,]上时,x1-x2<0,x1x2-2<0, 所以g(x1)-g(x2)>0, 所以g(x1)>g(x2),g(x)为减函数. 当x1,x2∈[,+∞)时,x1-x2<0,x1x2-2>0, 所以g(x1)-g(x2)<0,g(x)为增函数, 又g(x)为奇函数,所以在[-,0)上是减函数,在(-∞,-]上是增函数,所以y=在(-∞,-],[,2]上是增函数,故函数f(x)的缓减区间为(-∞, -],[,2]. 3.(4分)已知f(x)=3x+2在任意区间上的平均变化率为________,当自变量每增加1个单位时,函数值增加________个单位.   【解析】设区间, 则==3, 当自变量每增加1个单位时,函数值增加3个单位. 答案:3 3 4.(4分)函数y=x2与函数y=xln x在区间(0,+∞)上增长较快的一个是________.  【解析】当x变大时,x2比lnx增长要快, 所以x2要比xln x增长要快. 答案:y=x2 5.(14分)已知函数f(x)=3x+1,g(x)=5x-4, (1)判断f(2),g(2)的相对大小. (2)求使f(2+Δx)<g(2+Δx)成立的Δx的取值范围. 【解析】(1)因为f(2)=2×3+1=7,g(2)=2×5-4=6, 所以f(2)>g(2). (2)令f(2+Δx)<g(2+Δx),则3(2+Δx)+1<5(2+Δx)-4,即2Δx>1,解得Δx>. 1.已知函数f(x)=x2,g(x)=3x,h(x)=ln x,这三个函数在区间(a>1)上的平均变化率的大小为________.   【解析】因为==2a+1, ==3, ==ln, 又因为a>1,所以2a+1>2×1+1=3, ln<ln=ln 2<ln e=1<3, 因此在区间上,f(x)的平均变化率最大,h(x)的平均变化率最小. 答案:f(x)>g(x)>h(x) 2.比较函数f(x)=4x,g(x)=x+1在区间(a<0)上的平均变化率的相对大小. 【解析】因为==4a-1(4-1)=3×4a-1, ==, 又因为a<0, 所以=3×4a-1<3×40-1=3×4-1=, 所以函数f(x)在区间上的平均变化率比g(x)的小. - 6 -
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服