资源描述
北师大版七年级数学上册平时训练试卷【不含答案】
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计30分)
1、与易拉罐类似的几何体是( )
A .圆锥 B .圆柱 C .棱锥 D .棱柱
2、下列几何体中,圆柱是( )
A . B . C . D .
3、下列几何体中,面的个数最多的是( )
A . B . C . D .
4、下列几何体中,含有曲面的有( )
A .1个 B .2个 C .3个 D .4个
5、下列几何体中与其余三个不属于同一类几何体的是( )
A . B . C . D .
6、不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有6条棱,则该模型对应的立体图形可能是( )
A .四棱柱 B .三棱柱 C .四棱锥 D .三棱锥
7、如图,5个边长为 的立方体摆在桌子上,则露在表面的部分的面积为( )
A.13cm B.16cm C.20cm D .23cm
8、下列图形绕虚线旋转一周,便能形成圆锥体的是( )
A . B . C . D .
9、把一枚硬币在桌面上竖直快速旋转后所形成的几何体是( )
A .圆柱 B .圆锥 C .球 D .正方体
10、将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是( )
A . B . C . D .
11、下列几何体中,是棱锥的为( )
A . B . C . D .
12、有一个几何体模型,甲同学:它的侧面是曲面;乙同学:它只有一个底面,且是圆形.则该模型对应的立体图形可能是( )
A .三棱柱 B .三棱锥 C .圆锥 D .圆柱
13、“节日的焰火”可以说是( )
A .面与面交于线 B .点动成线 C .面动成体 D .线动成面
14、下列几何体,都是由平面围成的是( )
A .圆柱 B .三棱柱 C .圆锥 D .球
15、生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( )
A .圆柱体 B .球体 C .圆 D .圆锥体
二、填空题(每小题4分,共计20分)
1、在朱自清的《春》中有描写春雨的语句“像牛毛,像细丝,密密地斜织着”这里把雨滴看成了点,请用数学知识解释这一现象 .
2、在乒乓球、足球、羽毛球、六角螺母中,形状类似球体的有 .
3、已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .
4、从棱长为4的正方体毛坯的一角,挖去一个棱长为2的小正方体,得到一个如图所示的零件,则这个零件的表面积为 .
5、如果一个六棱柱的一条侧棱长为5 cm,那么所有侧棱之和为 .
三、判断题(每小题2分,共计6分)
1、棱柱侧面的形状可能是一个三角形。( )
2、体是由面围成的( )
四、计算题(每小题4分,共计12分)
1、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
2、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
3、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
五、解答题(每小题4分,共计32分)
1、如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2 , 那么这根木料本来的体积是多少?
2、如图,把一个木制正方体的表面涂上颜色,然后将正方体的棱分成相等的四份,并做上标记,得到许多小正方体.问
(1)有 个小正方体;
(2)有 个小正方体只有两面涂有颜色
(3)有 个小正方体只有3面都涂了颜色.
(4)有 个小正方体6面都未涂色.
3、如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连结DP,作PQ⊥DP,使得PQ交射线BC于点E,设AP=x.
⑴当x为何值时,△APD是等腰三角形?
⑵若设BE=y,求y关于x的函数关系式;
⑶若BC的长可以变化,在现在的条件下,是否存在点P,使得PQ经过点C?若存在,求出相应的AP的长;若不存在,请说明理由,并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C.
4、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)
5、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)
6、如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.
(1)求证:四边形ABCD是正方形;
(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.
(3)若EG=4,GF=6,BM=3 , 求AG、MN的长.
7、10个棱长为acm的正方体摆放成如图的形状,这个图形的表面积是多少?
8、把19个边长为2cm的正方体重叠起来,作成如图那样的立体图形,求这个立体图形的表面积.
展开阅读全文