收藏 分销(赏)

2022年普通高等学校招生全国统一考试数学文试题(安徽卷).docx

上传人:二*** 文档编号:4449742 上传时间:2024-09-23 格式:DOCX 页数:10 大小:180.60KB
下载 相关 举报
2022年普通高等学校招生全国统一考试数学文试题(安徽卷).docx_第1页
第1页 / 共10页
本文档共10页,全文阅读请下载到手机保存,查看更方便
资源描述
2022年普通高等学校招生全国统一考试〔安徽卷文科〕 [试卷总评] 2022年安徽文科卷相对于2022年安徽文科卷的难度来说有所加大。 从试卷难度方面:选择填空跟以往的试卷一样从易到难,但在做的过程中不是那么顺畅。第1题考查复数,难度不大;第2题考查集合的交与补以及不等式求法;第3题程序框图,简单;第4题充分必要条件,容易题;第5题古典概型,只要考生能够理解题意,根本没问题;第6题直线与圆的方程,考查圆中弦长的求法,第7题等差数列根本量的求解,简单;第11题考查函数定义域的求法,简单;第12题常规的线性规划题,难度不大;第14题,抽象函数解析式的求解,难度中等。选择题第8,9,10题,填空题第13,15题难度加大。第8题考查函数转化思想以及数形结合,难度很大,考生不一定能想到方法;第9题三角函数,对正弦余弦定理的考查,计算量大;第10题函数零点的考查,难度很大,不容易做好;第13题平面向量,数量积的运算,需要细心;第15题立体几何的截面问题,是考生平时学习中最不容易弄明白的地方。大题第16题三角函数:容易,主要考查恒等变形,三角函数图像变换,考生需注意图像变换时语言的描叙;大题第17题概率统计:难度不大,对计算的要求很高,在那种高压环境下必须有个良好的心态才能做好;大题第18题立体几何:难度中等,常规性的考查了三棱锥体积的求法,在选择顶点的过程中,需要考生注意看清垂直关系;大题第19题数列:综合性强,将函数求导利用到数列求通项中,只要学生能够细心,拿下这道题还是没有问题的;大题第20题函数:题型新颖,考查考生对新问题冷静处理的能力,对区间长度的准确理解;大题第21题:难度较大,计算量大,点比较多,也容易把考生绕进去,要将这题做好,需要一定的计算根本功。 [详细解析] 一.选择题选择题:本大题共10小题。每题5分,共50分。在每个小题给出的四个选项中,只有一项为哪一项符合题目要求的。 〔1〕设是虚数单位,假设复数是纯虚数,那么的值为 〔 〕 〔A〕-3 〔B〕-1 〔C〕1 〔D〕3 【答案】D 【解析】,所以a=3, 应选择D 【考点定位】考查纯虚数的概念,及复数的运算,属于简单题. 〔2〕,那么 〔 〕 〔A〕 〔B〕 〔C〕 〔D〕 【答案】A 【解析】A:,,,所以答案选A 【考点定位】考查集合的交集和补集,属于简单题. 〔3〕如下列图,程序据图〔算法流程图〕的输出结果为 〔A〕 〔B〕 〔C〕 〔D〕 【答案】C 【解析】; ; ,输出 所以答案选择C 【考点定位】此题考查算法框图的识别,逻辑思维,属于中等难题. 〔4〕“〞是“〞的 〔A〕充分不必要条件〔B〕必要不充分条件 〔C〕充分必要条件〔D〕既不充分也不必要条件 【答案】B 【解析】,所以答案选择B 【考点定位】考查充分条件和必要条件,属于简单题. (5) 假设某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的时机均等,那么甲或乙被 录用的概率为 〔A〕 (B) (C)〔D〕 【答案】D 【解析】总的可能性有10种,甲被录用乙没被录用的可能性3种,乙被录用甲没被录用的可能性3种,甲乙都被录用的可能性3种,所以最后的概率 【考点定位】考查古典概型的概念,以及对一些常见问题的分析,简单题. 〔6〕直线被圆截得的弦长为 〔A〕1 〔B〕2 〔C〕4 〔D〕 【答案】C 【解析】圆心,圆心到直线的距离,半径,所以最后弦长为. 【考点定位】考查解析几何初步知识,直线与圆的位置关系,点到直线的距离,简单题. 〔7〕设为等差数列的前项和,,那么= 〔A〕〔B〕 〔C〕〔D〕2 【答案】A 【解析】 【考点定位】考查等差数列通项公式和前n项公式的应用,以及数列根本量的求解. (8) 函数的图像如下列图,在区间上可找到个不同的数,使得,那么的取值范围为 (A) (B) (C) (D) 【答案】B 【解析】 表示到原点的斜率; 表示与原点连线的斜率,而在曲线图像上,故只需考虑经过原点的直线与曲线的交点有几个,很明显有3个,应选B. 【考点定位】考查数学中的转化思想,对函数的图像认识. (9) 设的内角所对边的长分别为,假设,那么角= (A) (B) (C) (D) 【答案】B 【解析】由正弦定理,所以; 因为,所以, ,所以,答案选择B 【考点定位】考查正弦定理和余弦定理,属于中等难度. (10) 函数有两个极值点,假设,那么关于的方程 的不同实根个数为 〔A〕3 (B)4 (C) 5 (D)6 【答案】A 【解析】,是方程的两根, 由,那么又两个使得等式成立,,,其函数图象如下: 如图那么有3个交点,应选A. 【考点定位】考查函数零点的概念,以及对嵌套型函数的理解. 二. 填空题 〔11〕 函数的定义域为_____________. 【答案】 【解析】,求交集之后得的取值范围 【考点定位】考查函数定义域的求解,对数真数位置大于0,分母不为0,偶次根式底下大于等于0. 〔12〕假设非负数变量满足约束条件,那么的最大值为__________. 【答案】4 【解析】 由题意约束条件的图像如下: 当直线经过时,,取得最大值. 【考点定位】考查线性规划求最值的问题,要熟练掌握约束条件的图像画法,以及判断何时取最大. 〔13〕假设非零向量满足,那么夹角的余弦值为_______. 【答案】 【解析】等式平方得: 那么,即 得 【考点定位】考查向量模长,向量数量积的运算,向量最根本的化简. 〔14〕定义在上的函数满足.假设当时。, 那么当时,=________________. 【答案】 【解析】当,那么,故 又,所以 【考点定位】考查抽象函数解析式的求解. (15) ①当时,为四边形 ②当时,为等腰梯形 ③当时,与的交点满足 ④当时,为六边形 ⑤当时,的面积为 【答案】①②③⑤ 【解析】〔1〕,S等腰梯形,②正确,图如下: 〔2〕,S是菱形,面积为,⑤正确,图如下: 〔3〕,画图如下:,③正确 〔4〕,如图是五边形,④不正确; 〔5〕,如以下列图,是四边形,故①正确 【考点定位】考查立体几何中关于切割的问题,以及如何确定平面。 三. 解答题 〔16〕〔本小题总分值12分〕 设函数. 〔Ⅰ〕求的最小值,并求使取得最小值的的集合; 〔Ⅱ〕不画图,说明函数的图像可由的图象经过怎样的变化得到. 【解析】〔1〕 当时,,此时 所以,的最小值为,此时x 的集合. (2) 横坐标不变,纵坐标变为原来的倍,得; 然后向左平移个单位,得 【考点定位】此题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.考查逻辑推理和运算求解能力,中等难度. 〔17〕〔本小题总分值12分〕 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩〔百分制〕作为样本,样本数据的茎叶图如下: 甲 乙 7 4 5 5 3 3 2 5 3 3 8 5 5 4 3 3 3 1 0 0 6 0 6 9 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 0 7 0 0 2 2 2 3 3 6 6 9 7 5 4 4 2 8 1 1 5 5 8 2 0 9 0 〔Ⅰ〕假设甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率〔60分及60分以上为及格〕; 〔Ⅱ〕设甲、乙两校高三年级学生这次联考数学平均成绩分别为,估计的值. 【解析】〔1〕 〔2〕 = = 【考点定位】考查随机抽样与茎叶图等统计学根本知识,考查用样本估计总体的思想性以及数据分析处理能力. 〔18〕〔本小题总分值12分〕 如图,四棱锥的底面是边长为2的菱形,. . 〔Ⅰ〕证明: 〔Ⅱ〕假设为的中点,求三菱锥的体积. 【解析】 〔1〕证明:连接交于点 又是菱形 而⊥面⊥ (2) 由〔1〕⊥面 = 【考点定位】考查空间直线与直线,直线与平面的位置,.三棱锥体积等根底知识和根本技能,考查空间观念,推理论证能力和运算能力. 〔19〕〔本小题总分值13分〕 设数列满足,,且对任意,函数 满足 (Ⅰ)求数列的通项公式; 〔Ⅱ〕假设,求数列的前项和. 【解析】 由 所以, 是等差数列. 而 〔2〕 【考点定位】考查函数的求导法那么和求导公式,等差、等比数列的性质和数列根本量的求解.并考查逻辑推理能力和运算能力. (20) 〔本小题总分值13分〕 设函数,其中,区间. 〔Ⅰ〕求的长度〔注:区间的长度定义为; 〔Ⅱ〕给定常数,当时,求长度的最小值. 【解析】 〔1〕令 解得 的长度 〔2〕 那么 由 〔1〕 ,那么 故关于在上单调递增,在上单调递减. 【考点定位】考查二次不等式的求解,以及导数的计算和应用,并考查分类讨论思想和综合运用数学知识解决问题的能力. 〔21〕〔本小题总分值13分〕 椭圆的焦距为4,且过点. 〔Ⅰ〕求椭圆C的方程; 〔Ⅱ〕设为椭圆上一点,过点作轴的垂线,垂足为。取点,连接,过点作的垂线交轴于点。点是点关于轴的对称点,作直线,问这样作出的直线是否与椭圆C一定有唯一的公共点并说明理由. 【解析】 〔1〕因为椭圆过点 且 椭圆C的方程是 〔2〕 由题意,各点的坐标如上图所示, 那么的直线方程: 化简得 又, 所以带入 求得最后 所以直线与椭圆只有一个公共点. 【考点定位】考查椭圆的标准方程及其几何性质,直线和椭圆的位置关系,并考查数形结合思想,逻辑推理能力及运算能力.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服