资源描述
北师大版七年级数学上册达标试卷【不含答案】
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计30分)
1、下面几种图形:①三角形,②长方形,③立方体,④圆,⑤圆锥,⑥圆柱.其中属于立体图形的有( )
A .1个 B .2个 C .3个 D .4个
2、一个物体的外形是长方体(如图(1)),其内部构造不祥.用平面横向自上而下截这个物体时,得到了一组截面,截面形状如图(2)所示,这个长方体的内部构造是( )
A .圆柱 B .球 C .圆锥 D .圆柱或球
3、下列几何体中,属于棱锥的是( )
A . B .
C . D .
4、从下列物体抽象出来的几何图形可以看成圆柱的是( )
A . B . C . D .
5、如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是( )
A .长方体 B .球 C .圆柱 D .圆锥
6、下边的立体图形是由哪个平面图形绕轴旋转一周得到的( )
A . B . C . D .
7、如下图所示将三角形绕直线l旋转一周,可以得到图(e)所示的立体图形的是( )
A .图(a) B .图(b) C .图(c) D .图(d)
8、在下图的四个立体图形中,从正面看是四边形的立体图形有( )
A .1个 B .2个 C .3个 D .4个
9、将一个直角三角形绕它的直角边旋转一周得到的几何体是( )
A . B . C . D .
10、下列几何体中,其主视图是曲线图形的是( )
A . B . C . D .
11、长方形 绕 旋转一周,得到的几何体是( )
A .圆柱 B .圆锥 C .棱柱 D .长方体
12、下列图形属于平面图形的是( )
A .立方体 B .球 C .圆柱 D .三角形
13、如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )
A .12 B .14 C .16 D .18
14、下列说法正确的有( )
①n棱柱有2n个顶点,2n条棱,(n+2)个面(n为不小于3的正整数);②点动成线,线动成面,面动成体;③圆锥的侧面展开图是一个圆;④用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形.
A .1个 B .2个 C .3个 D .4个
15、如图,有一个棱长是 的正方体,从它的一个顶点处挖去一个棱长是 的正方体后,剩下物体的表面积和原来的表面积相比较( )
A .变大了 B .变小了 C .没变 D .无法确定变化
二、填空题(每小题4分,共计20分)
1、当笔尖在纸上移动时,形成 ,这说明: ;表针旋转时,形成了一个 ,这说明: ;长方形纸片绕它的一边旋转,形成的几何图形就是 ,这说明: .
2、硬币在桌面上快速地转动时,看上去像球,这说明了 .
3、飞机表演的“飞机拉线”用数学知识解释为 ,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了 .
4、一个棱锥共有7个面,这是 棱锥,有 个侧面.
5、在长方体、圆柱、圆锥、球中,三视图均一样的几何体是 。
三、判断题(每小题2分,共计6分)
1、体是由面围成的( )
2、棱柱侧面的形状可能是一个三角形。( )
四、计算题(每小题4分,共计12分)
1、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
2、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
3、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
五、解答题(每小题4分,共计32分)
1、如图1,已知直角三角形两直角边的长分别为3和4,斜边的长为5
(1)试计算该直角三角形斜边上的高.
(2)按如图2、3、4三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积(结果保留π).
2、如图,OA,OB,OC是圆的三条半径.
(1)若他们的圆心角度数比为1:2:3,求这三个扇形的圆心角的度数.
(2)在(1)的条件下,若圆的半径为2cm,求这三个扇形的面积.(保留π)
3、如图,某玩具是由两个正方体用胶水黏合而成的,它们的棱长分别为1dm和2dm,为了美观,现要在其表面喷涂油漆,已知喷涂1dm2需用油漆59克,求喷涂这个玩具共需多少克油漆?
4、如图,一个正五棱柱的底面边长为2cm,高为4cm.
(1)这个棱柱共有多少个面?计算它的侧面积;
(2)这个棱柱共有多少个顶点?有多少条棱?
(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.
5、观察如图所示的直四棱柱.
(1)它有几个面?几个底面?底面与侧面分别是什么图形?
(2)侧面的个数与底面多边形的边数有什么关系?
(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?
6、把一张边长为40 cm的正方形硬纸板,进行适当的裁剪,折成一个长方体盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.
①要使折成的长方体盒子的底面积为484 cm2 , 那么剪掉的正方形的边长为多少?
②折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方体盒子.若折成的一个长方体盒子的表面积为550 cm2 , 求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).
7、分别用一张边长为5cm的正方形和一张长6cm、宽4cm的长方形硬纸片旋转一周得到两个圆柱.哪个圆柱的体积更大?
8、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)
展开阅读全文