资源描述
2021-2022高考数学模拟试卷含解析
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数(其中,图象的一个对称中心为,,其相邻一条对称轴方程为,该对称轴处所对应的函数值为,为了得到的图象,则只要将的图象( )
A.向右平移个单位长度 B.向左平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
2.如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为( )
A. B. C. D.
3.等比数列的前项和为,若,,,,则( )
A. B. C. D.
4.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为( )
A. B. C. D.
5.已知变量,满足不等式组,则的最小值为( )
A. B. C. D.
6.如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、、分别交于、、,设三棱锥的体积为,截面三角形的面积为,则( )
A., B.,
C., D.,
7.已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为( )
A. B. C. D.
8.已知实数x,y满足约束条件,若的最大值为2,则实数k的值为( )
A.1 B. C.2 D.
9.已知复数满足,则=( )
A. B.
C. D.
10.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为( )
A. B. C. D.
11.已知函数(其中,,)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:
①直线是函数图象的一条对称轴;
②点是函数的一个对称中心;
③函数与的图象的所有交点的横坐标之和为.
其中正确的判断是( )
A.①② B.①③ C.②③ D.①②③
12.已知,,分别是三个内角,,的对边,,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是____________.
14.已知向量,,且,则实数m的值是________.
15.如图,己知半圆的直径,点是弦(包含端点,)上的动点,点在弧上.若是等边三角形,且满足,则的最小值为___________.
16.已知向量=(1,2),=(-3,1),则=______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,曲线的参数方程为(为参数).点在曲线上,点满足.
(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求动点的轨迹的极坐标方程;
(2)点,分别是曲线上第一象限,第二象限上两点,且满足,求的值.
18.(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:
1
2
3
4
5
6
7
5
8
8
10
14
15
17
(1)经过进一步统计分析,发现与具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.
参考公式:,,,.
19.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC.
(Ⅰ)求sinB的值;
(Ⅱ)求sin(2B+)的值.
20.(12分)已知函数.
(1)证明:当时,;
(2)若函数只有一个零点,求正实数的值.
21.(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.
(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;
(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及.
22.(10分)的内角A,B,C的对边分别为a,b,c,已知.
(1)求B;
(2)若,求的面积的最大值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,可得的解析式,再根据函数的图象变换规律,诱导公式,得出结论.
【详解】
根据已知函数
其中,的图象过点,,
可得,,
解得:.
再根据五点法作图可得,
可得:,
可得函数解析式为:
故把的图象向左平移个单位长度,
可得的图象,
故选B.
【点睛】
本题主要考查由函数的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,函数的图象变换规律,诱导公式的应用,属于中档题.
2.C
【解析】
利用建系,假设长度,表示向量与,利用向量的夹角公式,可得结果.
【详解】
由平面平面,
平面平面,平面
所以平面,又平面
所以,又
所以作轴//,建立空间直角坐标系
如图
设,所以
则
所以
所以
故选:C
【点睛】
本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.
3.D
【解析】
试题分析:由于在等比数列中,由可得:,
又因为,
所以有:是方程的二实根,又,,所以,
故解得:,从而公比;
那么,
故选D.
考点:等比数列.
4.A
【解析】
将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.
【详解】
由,,可知平面.
将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.
由此易知外接球球心应在棱柱上下底面三角形的外心连线上,
记的外心为,由为等边三角形,
可得.又,故在中,,
此即为外接球半径,从而外接球表面积为.
故选:A
【点睛】
本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.
5.B
【解析】
先根据约束条件画出可行域,再利用几何意义求最值.
【详解】
解:由变量,满足不等式组,画出相应图形如下:
可知点,,
在处有最小值,最小值为.
故选:B.
【点睛】
本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.
6.A
【解析】
设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项.
【详解】
如图所示,利用排除法,取与重合时的情况.
不妨设,延长到,使得.
,,,,则,
由余弦定理得,
,,
又,,
当平面平面时,,,排除B、D选项;
因为,,此时,,
当平面平面时,,,排除C选项.
故选:A.
【点睛】
本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题.
7.D
【解析】
根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.
【详解】
依题意有, ①
, ②
①②得,又因为,
所以,在上单调递增,
所以函数的单调递增区间为.
故选:D.
【点睛】
本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.
8.B
【解析】
画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.
【详解】
可行域如图中阴影部分所示,,,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).
故选:B.
【点睛】
本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.
9.B
【解析】
利用复数的代数运算法则化简即可得到结论.
【详解】
由,得,
所以,.
故选:B.
【点睛】
本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.
10.B
【解析】
根据三角函数定义得到,故,再利用和差公式得到答案.
【详解】
∵角的终边过点,∴,.
∴.
故选:.
【点睛】
本题考查了三角函数定义,和差公式,意在考查学生的计算能力.
11.C
【解析】
分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T,再代入最低点可求得解析式为,依次判断各选项的正确与否.
详解:因为为对称中心,且最低点为,
所以A=3,且
由
所以,将带入得
,
所以
由此可得①错误,②正确,③当时,,所以与 有6个交点,设各个交点坐标依次为 ,则,所以③正确
所以选C
点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题.
12.C
【解析】
原式由正弦定理化简得,由于,可求的值.
【详解】
解:由及正弦定理得.
因为,所以代入上式化简得.
由于,所以.
又,故.
故选:C.
【点睛】
本题主要考查正弦定理解三角形,三角函数恒等变换等基础知识;考查运算求解能力,推理论证能力,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13.10
【解析】
作出长方体如图所示,由于,则就是异面直线与所成的角,且,在等腰直角三角形中,由,得,又,则,从而长方体的表面积为.
14.1
【解析】
根据即可得出,从而求出m的值.
【详解】
解:∵;
∴;
∴m=1.
故答案为:1.
【点睛】
本题考查向量垂直的充要条件,向量数量积的坐标运算.
15.1
【解析】
建系,设,表示出点坐标,则,根据的范围得出答案.
【详解】
解:以为原点建立平面坐标系如图所示:则,,,,
设,则,,
,,,
,
,
显然当取得最大值4时,取得最小值1.
故答案为:1.
【点睛】
本题考查了平面向量的数量积运算,坐标运算,属于中档题.
16.-6
【解析】
由可求,然后根据向量数量积的坐标表示可求 .
【详解】
∵=(1,2),=(-3,1),∴=(-4,-1),
则 =1×(-4)+2×(-1)=-6
故答案为-6
【点睛】
本题主要考查了向量数量积的坐标表示,属于基础试题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)();(2)
【解析】
(1)由已知,曲线的参数方程消去t后,要注意x的范围,再利用普通方程与极坐标方程的互化公式运算即可;
(2)设,,由(1)可得,,相加即可得到证明.
【详解】
(1),
∵,∴,∴,
由题可知:,
:().
(2)因为,
设,,
则,
,
.
【点睛】
本题考查参数方程、普通方程、极坐标方程间的互化,考查学生的计算能力,是一道容易题.
18.(1);(2)见解析
【解析】
试题分析:
(I)由题意可得,,则,,关于的线性回归方程为.
(II)由题意可知二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,.据此可得分布列,计算相应的数学期望为元.
试题解析:
(I)依题意:,
,,,
,,
则关于的线性回归方程为.
(II)二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:
,,,
,.
所以,总金额的分布列如下表:
0
300
600
900
1200
总金额的数学期望为元.
19.(Ⅰ) (Ⅱ)
【解析】
(Ⅰ)根据条件由正弦定理得,又c=2a,所以,由余弦定理算出,进而算出;
(Ⅱ)由二倍角公式算出,代入两角和的正弦公式计算即可.
【详解】
(Ⅰ) bsinB﹣asinA=asinC,所以由正弦定理得,
又c=2a,所以,由余弦定理得:
,又,所以;
(Ⅱ),
.
【点睛】
本题主要考查了正余弦定理的应用,运用二倍角公式和两角和的正弦公式求值,考查了学生的运算求解能力.
20.(1)证明见解析;(2).
【解析】
(1)把转化成,令,由题意得,即证明恒成立,通过导数求证即可
(2)直接求导可得,,令,得或,故根据0与的大小关系来进行分类讨论即可
【详解】
证明:(1)令,则.
分析知,函数的增区间为,减区间为.
所以当时,.
所以,即,
所以.
所以当时,.
解:(2)因为,所以.
讨论:
①当时,,此时函数在区间上单调递减.
又,
故此时函数仅有一个零点为0;
②当时,令,得,故函数的增区间为,减区间为,.
又极大值,所以极小值.
当时,有.
又,此时,
故当时,函数还有一个零点,不符合题意;
③当时,令得,故函数的增区间为,减区间为,.
又极小值,所以极大值.
若,则,得,
所以
,
所以当且时,,故此时函数还有一个零点,不符合题意.
综上,所求实数的值为.
【点睛】
本题考查不等式的恒成立问题和函数的零点问题,本题的难点在于把导数化成因式分解的形式,如,进而分类讨论,本题属于难题
21. (Ⅰ). (Ⅱ)见解析.
【解析】
(Ⅰ)人中很幸福的有人,可以先计算其逆事件,即人都认为不很幸福的概率,再用减去人都认为不很幸福的概率即可;(Ⅱ)根据题意,随机变量,列出分布列,根据公式求出期望即可.
【详解】
(Ⅰ)设事件抽出的人至少有人是“很幸福”的,则表示人都认为不很幸福
(Ⅱ)根据题意,随机变量,的可能的取值为
;;
;
所以随机变量的分布列为:
所以的期望
【点睛】
本题考查了离散型随机变量的概率分布列,数学期望的求解,概率分布中的二项分布问题,属于常规题型.
22.(1)(2)
【解析】
(1)由正弦定理边化角化简已知条件可求得,即可求得;
(2)由余弦定理借助基本不等式可求得,即可求出的面积的最大值.
【详解】
(1),,
所以,
所以,
,,
,.
(2)由余弦定理得.,
,当且仅当时取等,
.
所以的面积的最大值为.
【点睛】
本题考查了正余弦定理在解三角形中的应用,考查了三角形面积的最值问题,难度较易.
展开阅读全文