资源描述
2021-2022高考数学模拟试卷含解析
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知等比数列满足,,等差数列中,为数列的前项和,则( )
A.36 B.72 C. D.
2.把函数的图象向右平移个单位,得到函数的图象.给出下列四个命题
①的值域为
②的一个对称轴是
③的一个对称中心是
④存在两条互相垂直的切线
其中正确的命题个数是( )
A.1 B.2 C.3 D.4
3.在中,内角所对的边分别为,若依次成等差数列,则( )
A.依次成等差数列 B.依次成等差数列
C.依次成等差数列 D.依次成等差数列
4.已知命题:使成立. 则为( )
A.均成立 B.均成立
C.使成立 D.使成立
5.已知若(1-ai )( 3+2i )为纯虚数,则a的值为 ( )
A. B. C. D.
6.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( )
A. B. C. D.
7.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面积是( )
A. B.2
C. D.
8.已知实数x,y满足,则的最小值等于( )
A. B. C. D.
9.已知函数()的部分图象如图所示,且,则的最小值为( )
A. B.
C. D.
10.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( )
A.多1斤 B.少1斤 C.多斤 D.少斤
11.在等差数列中,若为前项和,,则的值是( )
A.156 B.124 C.136 D.180
12.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( )
A.甲 B.乙 C.丙 D.丁
二、填空题:本题共4小题,每小题5分,共20分。
13.对定义在上的函数,如果同时满足以下两个条件:
(1)对任意的总有;
(2)当,,时,总有成立.
则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.
14.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.
15.在中,、的坐标分别为,,且满足,为坐标原点,若点的坐标为,则的取值范围为__________.
16.函数在的零点个数为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知数列,,数列满足,n.
(1)若,,求数列的前2n项和;
(2)若数列为等差数列,且对任意n,恒成立.
①当数列为等差数列时,求证:数列,的公差相等;
②数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由.
18.(12分)已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线的交点为,直线与交于两点.
(1)证明:点始终在直线上且;
(2)求四边形的面积的最小值.
19.(12分)已知函数.
(1)当时,求函数的值域;
(2)的角的对边分别为且,,求边上的高的最大值.
20.(12分)己知函数.
(1)当时,求证:;
(2)若函数,求证:函数存在极小值.
21.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.
(Ⅰ)求的极坐标方程和曲线的参数方程;
(Ⅱ)求曲线的内接矩形的周长的最大值.
22.(10分)在中,,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60°,连接,如图:
(1)证明:平面平面
(2)求平面与平面所成二面角的大小.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A
【解析】
根据是与的等比中项,可求得,再利用等差数列求和公式即可得到.
【详解】
等比数列满足,,所以,又,所以,由等差数列的性质可得.
故选:A
【点睛】
本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题.
2.C
【解析】
由图象变换的原则可得,由可求得值域;利用代入检验法判断②③;对求导,并得到导函数的值域,即可判断④.
【详解】
由题,,
则向右平移个单位可得,
,的值域为,①错误;
当时,,所以是函数的一条对称轴,②正确;
当时,,所以的一个对称中心是,③正确;
,则,使得,则在和处的切线互相垂直,④正确.
即②③④正确,共3个.
故选:C
【点睛】
本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.
3.C
【解析】
由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.
【详解】
依次成等差数列,,
正弦定理得,
由余弦定理得 ,,即依次成等差数列,故选C.
【点睛】
本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.
4.A
【解析】
试题分析:原命题为特称命题,故其否定为全称命题,即.
考点:全称命题.
5.A
【解析】
根据复数的乘法运算法则化简可得,根据纯虚数的概念可得结果.
【详解】
由题可知原式为,该复数为纯虚数,
所以.
故选:A
【点睛】
本题考查复数的运算和复数的分类,属基础题.
6.C
【解析】
先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.
【详解】
从6个球中摸出2个,共有种结果,
两个球的号码之和是3的倍数,共有
摸一次中奖的概率是,
5个人摸奖,相当于发生5次试验,且每一次发生的概率是,
有5人参与摸奖,恰好有2人获奖的概率是,
故选:.
【点睛】
本题主要考查了次独立重复试验中恰好发生次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.
7.A
【解析】
先根据已知求出原△ABC的高为AO=,再求原△ABC的面积.
【详解】
由题图可知原△ABC的高为AO=,
∴S△ABC=×BC×OA=×2×=,故答案为A
【点睛】
本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.
8.D
【解析】
设,,去绝对值,根据余弦函数的性质即可求出.
【详解】
因为实数,满足,
设,,
,
恒成立,
,
故则的最小值等于.
故选:.
【点睛】
本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.
9.A
【解析】
是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得.
【详解】
由题意,,∴函数在轴右边的第一个零点为,在轴左边第一个零点是,
∴的最小值是.
故选:A.
【点睛】
本题考查三角函数的周期性,考查函数的对称性.函数的零点就是其图象对称中心的横坐标.
10.C
【解析】
设这十等人所得黄金的重量从大到小依次组成等差数列 则 由等差数列的性质得 ,
故选C
11.A
【解析】
因为,可得,根据等差数列前项和,即可求得答案.
【详解】
,
,
.
故选:A.
【点睛】
本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.
12.D
【解析】
根据演绎推理进行判断.
【详解】
由①②④可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁.
故选:D.
【点睛】
本题考查演绎推理,掌握演绎推理的定义是解题基础.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
由不等式恒成立问题采用分离变量最值法:对任意的恒成立,解得,又在,恒成立,即,所以,从而可得.
【详解】
因为是定义在上G函数,
所以对任意的总有,
则对任意的恒成立,
解得,
当时,
又因为,,时,
总有成立,
即
恒成立,
即恒成立,
又此时的最小值为,
即恒成立,
又因为
解得.
故答案为:
【点睛】
本题是一道函数新定义题目,考查了不等式恒成立求参数的取值范围,考查了学生分析理解能力,属于中档题.
14.
【解析】
观察八卦中阴线和阳线的情况为3线全为阳线或全为阴线各一个,还有6个是1阴2阳和1阳2阴各3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。
【详解】
八卦中阴线和阳线的情况为3线全为阳线的一个,全为阴线的一个,1阴2阳的3个,1阳2阴的3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。
∴从8个卦中任取2卦,共有种可能,两卦中共2阳4阴的情况有,所求概率为。
故答案为:。
【点睛】
本题考查古典概型,解题关键是确定基本事件的个数。本题不能受八卦影响,我们关心的是八卦中阴线和阳线的条数,这样才能正确地确定基本事件的个数。
15.
【解析】
由正弦定理可得点在曲线上,设,则,将代入可得,利用二次函数的性质可得范围.
【详解】
解:由正弦定理得,
则点在曲线上,
设,则,
,
又,
,
因为,则,
即的取值范围为.
故答案为:.
【点睛】
本题考查双曲线的定义,考查向量数量积的坐标运算,考查学生计算能力,有一定的综合性,但难度不大.
16.
【解析】
求出的范围,再由函数值为零,得到的取值可得零点个数.
【详解】
详解:
由题可知,或
解得,或
故有3个零点.
【点睛】
本题主要考查三角函数的性质和函数的零点,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)(2)①见解析②数列不能为等比数列,见解析
【解析】
(1)根据数列通项公式的特点,奇数项为等差数列,偶数项为等比数列,选用分组求和的方法进行求解;
(2)①设数列的公差为,数列的公差为,当n为奇数时,得出;当n为偶数时,得出,从而可证数列,的公差相等;
②利用反证法,先假设可以为等比数列,结合题意得出矛盾,进而得出数列不能为等比数列.
【详解】
(1)因为,,所以,且,
由题意可知,数列是以1为首项,2为公差的等差数列,
数列是首项和公比均为4的等比数列,
所以;
(2)①证明:设数列的公差为,数列的公差为,
当n为奇数时,,
若,则当时,,
即,与题意不符,所以,
当n为偶数时,,,
若,则当时,,
即,与题意不符,所以,
综上,,原命题得证;
②假设可以为等比数列,设公比为q,
因为,所以,所以,,
因为当时,
,
所以当n为偶数,且时,,
即当n为偶数,且时,不成立,与题意矛盾,
所以数列不能为等比数列.
【点睛】
本题主要考查数列的求和及数列的综合,数列求和时一般是结合通项公式的特征选取合适的求和方法,数列综合题要回归基本量,充分挖掘题目已知信息,细思细算,本题综合性较强,难度较大,侧重考查逻辑推理和数学运算的核心素养.
18.(1)见解析(2)最小值为1.
【解析】
(1)根据抛物线的定义,判断出的轨迹为抛物线,并由此求得轨迹的方程.设出两点的坐标,利用导数求得切线的方程,由此求得点的坐标.写出直线的方程,联立直线的方程和曲线的方程,根据韦达定理求得点的坐标,并由此判断出始终在直线上,且.
(2)设直线的倾斜角为,求得的表达式,求得的表达式,由此求得四边形的面积的表达式进而求得四边形的面积的最小值.
【详解】
(1)∵动圆过定点,且与直线相切,∴动圆圆心到定点和定直线的距离相等,∴动圆圆心的轨迹是以为焦点的抛物线,∴轨迹的方程为:,
设,∴直线的方程为:,即:①,同理,直线的方程为:②,
由①②可得:,
直线方程为:,联立可得:,
,∴点始终在直线上且;
(2)设直线的倾斜角为,由(1)可得:,
,
∴四边形的面积为:,当且仅当或,即时取等号,∴四边形的面积的最小值为1.
【点睛】
本小题主要考查动点轨迹方程的求法,考查直线和抛物线的位置关系,考查抛物线中四边形面积的最值的计算,考查运算求解能力,属于中档题.
19.(1).(2)
【解析】
(1)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域,得出结论.
(2)由题意利用余弦定理、三角形的面积公式、基本不等式求得的最大值,可得边上的高的最大值.
【详解】
解:(1)∵函数,
当时,,.
(2)中,,∴.
由余弦定理可得,当且仅当时,取等号,
即的最大值为3.
再根据,故当取得最大值3时,取得最大值为.
【点睛】
本题考查降幂公式、两角和的正弦公式,考查正弦函数的性质,余弦定理,三角形面积公式,所用公式较多,选用恰当的公式是解题关键,本题属于中档题.
20.(1)证明见解析(2)证明见解析
【解析】
(1)求导得,由,且,得到,再利用函数在上单调递减论证.
(2)根据题意,求导,令,易知; ,易知当时,,;当时,函数单调递增,而,又,由零点存在定理得,使得,,使得,有从而得证.
【详解】
(1)依题意,,
因为,且,故,
故函数在上单调递减,
故.
(2)依题意,,
令,则;
而,可知当时,,
故函数在上单调递增,故当时,;
当时,函数单调递增,而,
又,故,使得,
故,使得,即函数单调递增,即单调递增;
故当时,,
故函数在上单调递减,在上单调递增,
故当时,函数有极小值.
【点睛】
本题考查利用导数研究函数的性质,还考查推理论证能力以及函数与方程思想,属于难题.
21.(Ⅰ)曲线的参数方程为:(为参数);的极坐标方程为;(Ⅱ)16.
【解析】
( I )直接利用转换关系,把参数方程、极坐标方程和直角坐标方程之间进行转换;
( II )利用三角函数关系式的恒等变换和正弦型函数的性质的应用,即可求出结果.
【详解】
(Ⅰ) 由题意:曲线的直角坐标方程为:,
所以曲线的参数方程为(为参数),
因为直线的直角坐标方程为:,
又因曲线的左焦点为,将其代入中,得到,
所以的极坐标方程为 .
(Ⅱ)设椭圆的内接矩形的顶点为,,,,
所以椭圆的内接矩形的周长为:,
所以当时,即时,椭圆的内接矩形的周长取得最大值16 .
【点睛】
本题考查了曲线的参数方程,极坐标方程与普通方程间的互化,三角函数关系式的恒等变换,正弦型函数的性质的应用,极径的应用,考查学生的求解运算能力和转化能力,属于基础题型.
22.(1)证明见解析(2)45°
【解析】
(1)设的中点为,连接,设的中点为,连接,,从而即为二面角的平面角,,推导出,从而平面,则,即,进而平面,推导四边形为平行四边形,从而,平面,由此即可得证.
(2)以B为原点,在平面中过B作BE的垂线为x轴,BE为y轴,BA为z轴建立空间直角坐标系,利用向量法求出平面与平面所成二面角的大小.
【详解】
(1)∵是的中点,∴.
设的中点为,连接.
设的中点为,连接,.
易证:,,
∴即为二面角的平面角.
∴,而为的中点.
易知,∴为等边三角形,∴.①
∵,,,∴平面.
而,∴平面,∴,即.②
由①②,,∴平面.
∵分别为的中点.
∴四边形为平行四边形.
∴,平面,又平面.
∴平面平面.
(2)如图,建立空间直角坐标系,设.
则,,,,
显然平面的法向量,
设平面的法向量为,,,
∴,∴.
,
由图形观察可知,平面与平面所成的二面角的平面角为锐角.
∴平面与平面所成的二面角大小为45°.
【点睛】
本题主要考查立体几何中面面垂直的证明以及求解二面角大小,难度一般,通常可采用几何方法和向量方法两种进行求解.
展开阅读全文