资源描述
北师大版七年级数学上册单元练习试卷(A4可打印)
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计30分)
1、下列几何体中,圆柱是( )
A . B . C . D .
2、如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是圆锥,这一现象能用以下哪个数学知识解释( )
A .点动成线 B .线动成面 C .面动成体 D .面面相交得线
3、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为 1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为( )
A .33分米2 B .24分米2 C .21分米2 D .42分米2
4、一个几何体由4个相同的小正方体搭成,从正面看和从左面看到的形状图如图所示,则原立体图形不可能是( )
A . B . C . D .
5、将下图中的三角形绕虚线旋转一周,所得的几何体是( ).
A . B . C . D .
6、“汽车上雨刷器的运动过程”能说明的数学知识是( )
A .点动成线 B .线动成面 C .面动成体 D .面与面交于线
7、如图,一个正方体的六个面上分别标有数字1,2,3,4,5,6.根据图中三种状态所显示的数字,正方体的正面“?”表示的数字是( )
A .1 B .2 C .3 D .6
8、下列几何体中,含有曲面的有( )
A .1个 B .2个 C .3个 D .4个
9、某几何体的三视图如图所示;则该几何体的表面积为( )
A .6 +6+2 B .18+2 C .3 D .6
10、将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是( )
A . B . C . D .
11、如图,下面的几何体,可以由下列选项中的哪个图形绕虚线旋转一周后得到( )
A . B . C . D .
12、已知下图为一几何体的从三个不同方向看的形状图,若从正面看的长方形的长为 ,从上面看的等边三角形的边长为 ,则这个几何体的侧面积是( )
A . B . C . D .
13、如图,含有曲面的几何体编号是( )
A .①②③ B .②③④ C .①④⑤ D .②③
14、长方形 绕 旋转一周,得到的几何体是( )
A .圆柱 B .圆锥 C .棱柱 D .长方体
15、下列几何体中,不完全是由平面围成的是( )
A . B . C . D .
二、填空题(每小题4分,共计20分)
1、如图,是某一个几何体的俯视图,主视图、左视图,则这个几何体是 .
2、若正方体棱长的和是36,则它的体积是 .
3、用8个棱长3厘米的立方体拼成一个长方体,其中表面积最小的长方体的面积为 平方厘米.
4、十八世纪数学家欧拉证明了简单多面体中顶点数( ),面数( ),棱数( )之间存在一个有趣的数量关系: ,这就是著名的欧拉定理.某个玻璃饰品的外形是简单的多面体,它的外表面是由三角形和八边形拼接而成,且有24个顶点,每个顶点都有3条棱,设该多面体外表面三角形个数是 个,八边形的个数是 ,则x+y= .
5、一个容积是125dm3的正方体棱长是 dm.
三、判断题(每小题2分,共计6分)
1、体是由面围成的( )
2、棱柱侧面的形状可能是一个三角形。( )
四、计算题(每小题4分,共计12分)
1、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
2、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
3、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
五、解答题(每小题4分,共计32分)
1、图中的几何体是由几个面所摆成的?面与面相交成几条线?它们是直的还是曲的?
2、如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连结DP,作PQ⊥DP,使得PQ交射线BC于点E,设AP=x.
⑴当x为何值时,△APD是等腰三角形?
⑵若设BE=y,求y关于x的函数关系式;
⑶若BC的长可以变化,在现在的条件下,是否存在点P,使得PQ经过点C?若存在,求出相应的AP的长;若不存在,请说明理由,并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C.
3、如图,在平整地面上,若干个完全相同的棱长为10cm的小正方体堆成一个几何体.
(1) 这个几何体由个小正方体组成
(2) 在下面网格中画出左视图和俯视图.
(3) 如果在这个几何体的表面(不含底面)喷上黄色的漆,则这个几何体喷漆的面积是多少cm2.
4、如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.
5、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)
6、将图中的几何体进行分类,并说明理由.
7、直角三角形绕着它的一条边旋转一周能得到什么立体图形?有几种情况?
8、观察下图,思考问题:
(1)你认识上面的图片中的哪些物体?
(2)这些物体的表面形状类似与哪些几何体?说说你的理由。
(3)你能再举出一些常见的图形吗? ;
展开阅读全文