1、北师大版七年级数学上册期末试卷(A4可编辑)(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计30分)1、如下图所示将三角形绕直线l旋转一周,可以得到图(e)所示的立体图形的是( )A .图(a) B .图(b) C .图(c) D .图(d)2、把一枚硬币在桌面上竖直快速旋转后所形成的几何体是( )A .圆柱 B .圆锥 C .球 D .正方体3、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( )A .20 B .22 C .24 D .264、沿图中虚线旋转一周,能围成的几何体是( )A
2、 . B . C . D .5、从下列物体抽象出来的几何图形可以看成圆柱的是( )A . B . C . D .6、图中的几何体是由哪个图形绕虚线旋转一周得到的( )A . B . C . D .7、下列说法不正确的是( )A .四棱柱是长方体 B .八棱柱有10个面C .六棱柱有12个顶点 D .经过棱柱的每个顶点有3条棱8、如图,有一个棱长是的正方体,从它的一个顶点处挖去一个棱长是的正方体后,剩下物体的表面积和原来的表面积相比较( )A .变大了 B .变小了 C .没变 D .无法确定变化9、如图,将直角三角形绕其斜边旋转一周,得到的几何体为( )A . B . C . D .10、如图
3、,下面的几何体,可以由下列选项中的哪个图形绕虚线旋转一周后得到( )A . B . C . D .11、下列几何体中,不完全是由平面围成的是( )A . B . C . D .12、如图所示,是由8个完全相同的小正方体搭成的几何体若小正方体的棱长为1,则该几何体的表面积是( )A .16 B .30 C .32 D .3413、将一个直角三角形绕它的直角边旋转一周得到的几何体是( )A . B . C . D .14、下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是( )A . B . C . D .15、生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于()A .圆柱体
4、B .球体 C .圆 D .圆锥体二、填空题(每小题4分,共计20分)1、如图,在长方体ABCDEFGH中,与面ADHE与面ABFE都垂直的面是 2、如图,一个正方体形状的木块,棱长为2米,若沿正方体的三个方向分别锯成3份、4份和5份,得到若干个大大小小的长方体木块,则所有这些长方体木块的表面积和是 平方米3、若一个棱柱有7个面,则它是 棱柱4、一个正方体的木块的体积是,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是 .5、当笔尖在纸上移动时,形成 ,这说明: ;表针旋转时,形成了一个 ,这说明: ;长方形纸片绕它的一边旋转,形成的几何图形就是 ,这说明: .三、判断题(每
5、小题2分,共计6分)1、棱柱侧面的形状可能是一个三角形。( )2、体是由面围成的( )四、计算题(每小题4分,共计12分)1、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?2、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?3、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积五、解答题(
6、每小题4分,共计32分)1、如图,梯形ABCD中,ABCD,ABC=90,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连结DP,作PQDP,使得PQ交射线BC于点E,设AP=x当x为何值时,APD是等腰三角形?若设BE=y,求y关于x的函数关系式;若BC的长可以变化,在现在的条件下,是否存在点P,使得PQ经过点C?若存在,求出相应的AP的长;若不存在,请说明理由,并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C2、把19个边长为2cm的正方体重叠起来,作成如图那样的立体图形,求这个立体图形的表面积3、将下列几何体与它的名称连起来4、第一行的平面图
7、形绕虚线旋转一周能得到第二行的一个几何体,请用线连接起来5、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形其露在外面的表面积是多少?(整个立体图形摆放在地上)6、分别画出下列平面图形:长方形,正方形,三角形,圆7、10个棱长为acm的正方体摆放成如图的形状,这个图形的表面积是多少?8、把一张边长为40 cm的正方形硬纸板,进行适当的裁剪,折成一个长方体盒子(纸板的厚度忽略不计)(1)如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子要使折成的长方体盒子的底面积为484 cm2, 那么剪掉的正方形的边长为多少?折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方体盒子若折成的一个长方体盒子的表面积为550 cm2, 求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况)