收藏 分销(赏)

2022-2022学年榆树市保寿镇中学七年级数学上册1.1生活中的图形课后练习试卷word.docx

上传人:二*** 文档编号:4441815 上传时间:2024-09-22 格式:DOCX 页数:12 大小:252KB 下载积分:5 金币
下载 相关 举报
2022-2022学年榆树市保寿镇中学七年级数学上册1.1生活中的图形课后练习试卷word.docx_第1页
第1页 / 共12页
本文档共12页,全文阅读请下载到手机保存,查看更方便
资源描述
七年级数学上册1.1生活中的图形课后练习试卷word可编辑 (考试时间:120分钟,总分100分) 班级:__________ 姓名:__________ 分数:__________ 一、单选题(每小题2分,共计34分) 1、圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是(   ) A . B . C . D . 2、从下列物体抽象出来的几何图形可以看成圆柱的是(    ) A . B . C . D . 3、如图所示的沙漏,可以看作是由下列所给的哪个平面图形绕虚线旋转一周而成的(   ) A . B . C . D . 4、长方形纸板绕它的一条边旋转1周形成的几何体为(    ) A .圆柱 B .棱柱 C .圆锥 D .球 5、下列几何体中,是棱锥的为(  ) A . B . C . D . 6、下列几何图形中为圆锥的是(   ). A . B . C . D . 7、下列图形属于平面图形的是(   ) A .立方体 B .球 C .圆柱 D .三角形 8、矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是(     ). A .56  B .32  C .24  D .60  9、下图是由(   )图形饶虚线旋转一周形成的 A . B . C . D . 10、如图,  是直角三角形  的高,将直角三角形  按以下方式旋转一周可以得到右侧几何体的是(    ). A .绕着  旋转 B .绕着  旋转 C .绕着  旋转 D .绕着  旋转 11、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为(    ) A .12π B .15π C .12π+6 D .15π+12 12、下列说法不正确的是(   ) A .四棱柱是长方体 B .八棱柱有10个面 C .六棱柱有12个顶点 D .经过棱柱的每个顶点有3条棱 13、下边的立体图形是由哪个平面图形绕轴旋转一周得到的(    ) A . B . C . D . 14、有一个几何体模型,甲同学:它的侧面是曲面;乙同学:它只有一个底面,且是圆形.则该模型对应的立体图形可能是(  ) A .三棱柱 B .三棱锥 C .圆锥 D .圆柱 15、下列几何体中,面的个数最多的是(  ) A . B . C . D . 16、将下面左图直角三角形ABC绕直角边AC旋转一周,所得几何体从正面看是( ) A . B . C . D . 17、在一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有(    ) A .3个 B .4个 C .5个 D .6个 二、填空题(每小题2分,共计40分) 1、在长方体、圆柱、圆锥、球中,三视图均一样的几何体是 。 2、用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为 cm2. 3、六个长方体包装盒按“规则方式”打包,所谓“规则方式”是指每相邻两个长方体必须以完全一样的面对接,最后得到的形状是一个更大的长方体,已知每一个小包装盒的长宽高分别为 5、4、3 则按“规则方式”打包后的大长方体的表面积最小是 . 4、用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm2. 5、如图,是某一个几何体的俯视图,主视图、左视图,则这个几何体是 .          6、一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是 . 7、将下列几何体分类  用序号填空  :    (1) 按有无曲面分类:有曲面的是 ,没有曲面的是 ; (2) 按柱体、锥体、球体分类:柱体的是 ,锥体的是 ,球体的是 . 8、如图是某圆锥的主视图和左视图,则该圆锥的表面积是 . 9、长方形的两条边长分别为3cm和4cm,以其中一条边所在的直线为轴旋转一周后得到几何体的底面积是 . 10、一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有 种爬行路线. 11、如图是一个几何体的三视图,若这个几何体的体积是 36,则它的表面积是 . 12、长方形的长为5cm,宽为3cm,请你计算该长方形绕着它的边旋转一周所得几何体的体积0 是.(π取3.14结果保留整数) 13、一个正方体的表面积是24㎡,那么这个正方体的所有棱长之和是 . 14、如图,在长方体ABCD﹣EFGH中,与面ADHE与面ABFE都垂直的面是  . 15、在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明 . 16、薄薄的硬币在桌面上转动时,看上去像球,这说明了 . 17、在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 . 18、如图,长方形  的长  为  ,宽  为  ,将长方形绕  边所在直线旋转后形成的立体图形的体积是   . 19、如图所示是一种棱长分别是2cm,3cm,4cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用6块积木来搭,那么搭成的大长方体的表面积最小是   . 20、10个棱长为acm的正方体摆成如图的形状,这个图形的表面积是 . 三、计算题(每小题2分,共计6分) 1、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大? 2、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积. 3、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积. 四、解答题(每小题4分,共计20分) 1、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上) 2、如图,长方形的长和宽分别是7cm和3cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题: (1)如图(1),绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14) (2)如图(2),绕着它的长所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14) 3、下图是长方体的表面展开图,将它折叠成一个长方体.  (1) 哪几个点与点  重合? (2) 若  ,  ,  ,求这个长方体的表面积和体积. 4、如图,一个正五棱柱的底面边长为2cm,高为4cm. (1)这个棱柱共有多少个面?计算它的侧面积; (2)这个棱柱共有多少个顶点?有多少条棱? (3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数. 5、探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作: 方案一:以较长的一组对边中点所在直线为轴旋转,如图①; 方案二:以较短的一组对边中点所在直线为轴旋转,如图②. (1)请通过计算说明哪种方法构造的圆柱体积大; (2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大; (3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服