资源描述
北师大版七年级数学上册同步试卷(可编辑)
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计30分)
1、一个几何体由4个相同的小正方体搭成,从正面看和从左面看到的形状图如图所示,则原立体图形不可能是( )
A . B . C . D .
2、若要把2个长6分米、宽5分米、高2分米的相同的长方体物体一起包装起来,那么最少需要( )平方分米的包装纸。
A .208 B .148 C .128 D .188
3、圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )
A . B . C . D .
4、将下面左图直角三角形ABC绕直角边AC旋转一周,所得几何体从正面看是( )
A . B . C . D .
5、“节日的焰火”可以说是( )
A .面与面交于线 B .点动成线 C .面动成体 D .线动成面
6、已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )
A .10 cm2 B .5π cm2 C .10π cm2 D .16π cm2
7、下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是( )
A . B . C . D .
8、电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于( )
A .点动成线 B .线动成面 C .面动成体 D .以上都不对
9、把如图的三角形绕它的最长边旋转一周,得到的几何体为图中的( )
A . B . C . D .
10、下列说法正确的是( )
A .圆柱的侧面是长方形 B .柱体的上下两底面可以大小不一样
C .棱锥的侧面是三角形 D .长方体不是棱柱
11、将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是( )
A . B . C . D .
12、十个棱长为 的正方体摆放成如图的形状,这个图形的表面积是( )
A . B . C . D .
13、下列图形绕虚线旋转一周,便能形成圆锥体的是( )
A . B . C . D .
14、如图,含有曲面的几何体编号是( )
A .①②③ B .②③④ C .①④⑤ D .②③
15、在下列立体图形中,只要两个面就能围成的是( )
A . B . C . D .
二、填空题(每小题4分,共计20分)
1、一个正方体有 个面.
2、将一个长为4,宽为3的长方形绕它的一边所在的直线旋转一周,问:得到圆柱体的表面积是 .(表面积包括上下底面和侧面,结果保留 )
3、汽车的雨刷把玻璃上的雨水刷干净,用数学知识解释为: .
4、如图是一个几何体的三视图,若这个几何体的体积是 36,则它的表面积是 .
5、如图,长方形的长为3cm,宽为2cm,以该长方形较短的一边所在直线为轴,将其旋转一周,形成圆柱,其体积为 cm3.(结果保留π)
三、判断题(每小题2分,共计6分)
1、棱柱侧面的形状可能是一个三角形。( )
2、体是由面围成的( )
四、计算题(每小题4分,共计12分)
1、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
2、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
3、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
五、解答题(每小题4分,共计32分)
1、将一个半径为2cm的圆分成3个扇形,其圆心角的比1:2:3,求:
①各个扇形的圆心角的度数.
②其中最大一个扇形的面积.
2、把一个长方形绕它的一条边所在的直线旋转一周能得到一个圆柱体,那么把一个长为8cm,宽为6cm的长方形,绕它的一条边所在的直线旋转一周后,你能计算出所得圆柱体的体积吗?(结果保留π)
3、如图,在平整地面上,若干个完全相同的棱长为10cm的小正方体堆成一个几何体.
(1) 这个几何体由个小正方体组成
(2) 在下面网格中画出左视图和俯视图.
(3) 如果在这个几何体的表面(不含底面)喷上黄色的漆,则这个几何体喷漆的面积是多少cm2.
4、如图,一个正五棱柱的底面边长为2cm,高为4cm.
(1)这个棱柱共有多少个面?计算它的侧面积;
(2)这个棱柱共有多少个顶点?有多少条棱?
(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.
5、将下列几何体与它的名称连起来
6、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)
7、探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:
方案一:以较长的一组对边中点所在直线为轴旋转,如图①;
方案二:以较短的一组对边中点所在直线为轴旋转,如图②.
(1)请通过计算说明哪种方法构造的圆柱体积大;
(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;
(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?
8、如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)
展开阅读全文