资源描述
七年级数学上册1.1生活中的图形期中试卷【可打印】
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、下列图形中不是立体图形的是( )
A .圆锥 B .圆柱 C .长方形 D .棱柱
2、把如图的三角形绕它的最长边旋转一周,得到的几何体为图中的( )
A . B . C . D .
3、矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是( ).
A .56 B .32 C .24 D .60
4、围成下列立体图形的各个面中,每个面都是平面的是( )
A . B .
C . D .
5、在下列立体图形中,只要两个面就能围成的是( )
A . B . C . D .
6、如图,下面的几何体,可以由下列选项中的哪个图形绕虚线旋转一周后得到( )
A . B . C . D .
7、下列说法正确的有( )
①n棱柱有2n个顶点,2n条棱,(n+2)个面(n为不小于3的正整数);②点动成线,线动成面,面动成体;③圆锥的侧面展开图是一个圆;④用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形.
A .1个 B .2个 C .3个 D .4个
8、下列几何体,都是由平面围成的是( )
A .圆柱 B .三棱柱 C .圆锥 D .球
9、下面图形中,以直线为轴旋转一周,可以得到圆柱体的是( )
A . B . C . D .
10、某几何体的三视图如图所示;则该几何体的表面积为( )
A .6 +6+2 B .18+2 C .3 D .6
11、由4个棱长均为1的小正方形组成如图所示的几何体,这个几何体的表面积为( )
A .18 B .15 C .12 D .6
12、用钢笔写字是一个生活中的实例,用数学原理分析,它所属于的现象是( )
A .点动成线 B .线动成面 C .线线相交 D .面面相交
13、下列几何体中,是棱锥的为( )
A . B . C . D .
14、如图,一个正方块的六个面分别标有A,B,C,D,E,F,从三个不同方向看到的情况,如图所示,则A的对面应该是字母( )
A .B B .C C .E D .F
15、有一个几何体模型,甲同学:它的侧面是曲面;乙同学:它只有一个底面,且是圆形.则该模型对应的立体图形可能是( )
A .三棱柱 B .三棱锥 C .圆锥 D .圆柱
16、下列说法正确的是( )
A .圆柱的侧面是长方形 B .柱体的上下两底面可以大小不一样
C .棱锥的侧面是三角形 D .长方体不是棱柱
17、在一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有( )
A .3个 B .4个 C .5个 D .6个
二、填空题(每小题2分,共计40分)
1、一个小立方块的六个面分别标有数字1,-2,3,-4,5,-6,从三个不同方向看到的情形如图,则如图放置时的底面上的数字之和等于 。
2、为了致敬抗疫一线最美逆行者,小明用棱长为1的小立方块粘接成了一个如图所示的几何体.从它的每一个面看都有一个穿透的完全相同的“十字孔”(阴影部分),则这个几何体(含内部)的表面积是 。
3、如图,一个表面涂满颜色的正方体,现将棱三等分,再把它切开变成若干个小正方体,两面都涂色的有个;各面都没有涂色的有 个.
4、在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明 .(填“点动成线”,“线动成面”或“面动成体”)
5、一个正方体的表面积是24㎡,那么这个正方体的所有棱长之和是 .
6、在乒乓球、足球、羽毛球、六角螺母中,形状类似球体的有 .
7、两个完全相同的长方体的长.宽.高分别为5cm.4cm.3cm,把它们叠放在一起组成个新长方体,在这个新长方体中,体积是 cm3 , 最大表面积是 cm2 .
8、已知在Rt△ABC中,∠C=90°,AB=5cm,BC=3cm,把Rt△ABC绕AB旋转一周,所得几何体的表面积是 .
9、若正方体棱长的和是36,则它的体积是 .
10、硬币在桌面上快速地转动时,看上去像球,这说明了 .
11、下面的几何体中,属于柱体的有 个
12、用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为 cm2.
13、一个棱柱有16个顶点,所有侧棱长的和是64cm,则每条侧棱长是 .
14、如图,由几个边长为1的小立方体所组成的几何体,从上面看到的形状图如图所示,小正方形中的数字表示在该位置的小正方体的个数,则这个几何体的表面积为 .
15、在Rt△ABC中,∠C=90°,AC=3,BC=4,把它沿斜边AB所在直线旋转一周,所得几何体的侧面积是 .(结果保留π)
16、将四个棱长为1厘米的小正方体拼成一个大长方体,大长方体的表面积可以是 平方厘米.
17、如图,在平面直角坐标系中, 的三个顶点的坐标分别是 、 、 ,如果 沿着边 旋转,则所得旋转体的体积是 (结果保留 ).
18、用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm2.
19、如图,由18个棱长为2cm的正方体拼成的立体图形,它的表面积是 cm2.
20、如果一个六棱柱的一条侧棱长为5 cm,那么所有侧棱之和为 .
三、计算题(每小题2分,共计6分)
1、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
2、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
3、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
四、解答题(每小题4分,共计20分)
1、将一个半径为2cm的圆分成3个扇形,其圆心角的比1:2:3,求:
①各个扇形的圆心角的度数.
②其中最大一个扇形的面积.
2、探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:
方案一:以较长的一组对边中点所在直线为轴旋转,如图①;
方案二:以较短的一组对边中点所在直线为轴旋转,如图②.
(1)请通过计算说明哪种方法构造的圆柱体积大;
(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;
(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?
3、
张先生前年在美美家园住宅小区订购了一套住房,图纸如图所示。已知:①该住房的价格a=15000元/平方米;②楼层的电梯、楼梯及门厅前室面积由两户购房者平均负担;③每户配置车库16平方米,每平方米以6000元计算;
根据以上提供的信息和数据计算:
(1)张先生这次购房总共应付款多少元?
(2)若经过两年,该住房价格变为21600元/平方米,那么该小区房价的年平均增长率为多少?
(3)张先生打算对室内进行装修,甲、乙两公司推出不同的优惠方案:在甲公司累计购买10000元材料后,再购买的材料按原价的90%收费;在乙公司累计购买5000元材料后,再购买的材料按原价的95%收费.张先生怎样选择能获得更大优惠?
4、图中的几何体是由几个面所摆成的?面与面相交成几条线?它们是直的还是曲的?
5、(1)如图,(1)、(2)、(3)、(4)为四个平面图形,请数一数:每个平面图形各有多少个顶点?多少条边?它们分别围成了多少个区域?请你将结果填入下表.
(2)观察上表,推断一个平面图形的顶点数,边数,区域数之间有什么关系?
展开阅读全文