1、1(本小题总分值14分) ABC_三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0) (1)假设uuu,求c的值; (2)假设c=5,求sinA的值AB AC = 02本小题总分值 13 分函数f (x) = Asin(x + j)( A 0, 0 j p ), x R 的最大值是 1 , 其图像经过点p 1M (, ) 。3 21求 f (x) 的解析式;2a , b p(0,)2,且 f (a ) = 3 , f (b ) = 12 , 求 f (a - b ) 的值。5133.本小题总分值 12 分向量a = (sin q ,-2) 与b = (1, cosq ) 互相垂直
2、,其中q (0, p )21求sin q 和cosq 的值2假设5 cos(q - j ) = 35 cosj , 0 j p ,求cosj 的值24本小题总分值 14 分设函数 f (x) = 3sin w x + p , w0 , x (-, +) ,且以 p 为最小正周期6 21求 f (0) ; 2求 f (x) 的解析式;3 f a + p = 9 ,求sin a 的值 412 55.(本小题总分值12分)函数 f (x) = 2 sin(1 x - p), x R .36(1)求 f (0) 的值;(2)设a , b 0, p , f (3a + p ) = 10 , f (3b
3、+ 2p ) = 6 ,求sin(a + b ) 的值.2 21351、解析2022uuu(1) AB = (-3, -4), AC = (c - 3, -4) 4 分AB -3(c - 3) +16 = 0uuu由AC = 0 可得6 分, 解得c = 2538 分(2)当c = 5 时,可得 AB = 5, AC = 2 5, BC = 5 , ABC 为等腰三角形10 分5过 B 作 BD AC 交 AC 于 D ,可求得 BD = 2sin A = BD = 2 512 分故AB514 分AC (其它方法如利用数量积 AB uuu 求出cos A 进而求sin A ;余弦定理正弦定理等
4、!)2、2022【解析】1依题意有 A = 1 ,那么 f (x) = sin(x + j) ,将点 M (p , 1 ) 代入得p53 2sin(p + j) = 1 ,而0 j p ,32f (x) = sin(x + p ) = cos x ;2+ j =p ,36j = p ,故22依题意有cosa = 3 , cos b = 12 ,而513a , b p(0,) ,2sina = 4 , sin b =1- (3)255= 5 ,1- (12)21313f (a - b ) = cos(a - b ) = cosa cos b + sin a sin b = 3 12 + 4 5=
5、 56 。3、(2022)【解析】 Q v,v5 135 1365,即sinq = 2 cosqa b agb = sinq - 2 cosq = 0又 sin2 q + cosq = 1 , 4 cos2 q + cos2 q = 1,即cos2 = 1 , sin2 q = 4又q p(0,)552 55sinq =, cosq =255(2) 5 cos(q - j) = 5(cosq cosj + sin q sin j) =5 cosj + 2 5 sin j = 3 5 cosqcosj = sin j,cos2 j = sin2 j = 1- cos2 j,即cos2 j = 1
6、2又 0 j p , cosj =2224、(2022)5(2022)解:1 f (0) = 2 sin(- p6) = -12 f (3a + p) = 2 sin1 (3a +p ) - p = 2sin a =,即sin a = 51023261313f (3b + 2p ) =12 sin (3b + 2p ) - p = 2 sin(b + p ) = 6 ,即cos b = 3 a , b 0, p ,362551- cos2 b2 1- sin2 a cosa = 12 , sin b = 4 135 sin(a + b ) = sina cos b + cosa sin b =5 3 + 12 4 = 6313513565