收藏 分销(赏)

2022年浙江省宁波市中考数学试卷.docx

上传人:二*** 文档编号:4393251 上传时间:2024-09-18 格式:DOCX 页数:22 大小:96.06KB
下载 相关 举报
2022年浙江省宁波市中考数学试卷.docx_第1页
第1页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2022年浙江省宁波市中考数学试卷一、选择题:本大题共12个小题,每题4分,共48分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.14分在,0,2这四个数中,为无理数的是ABC0D224分以下计算正确的选项是Aa2+a3=a5B2a2=4aCa2a3=a5Da23=a534分2022年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮“泰欧轮,其中45万吨用科学记数法表示为A0.45106吨B4.5105吨C45104吨D4.5104吨44分要使二次根式有意义,那么x的取值范围是Ax3Bx3Cx3Dx354分如下列图的几何体的俯视图为ABCD64分一个不透明的布袋里装有5个

2、红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为ABCD74分直线mn,将一块含30角的直角三角板ABC按如图方式放置ABC=30,其中A,B两点分别落在直线m,n上,假设1=20,那么2的度数为A20B30C45D5084分假设一组数据2,3,x,5,7的众数为7,那么这组数据的中位数为A2B3C5D794分如图,在RtABC中,A=90,BC=2,以BC的中点O为圆心分别与AB,AC相切于D,E两点,那么的长为ABCD2104分抛物线y=x22x+m2+2m是常数的顶点在A第一象限B第二象限C第三象限D第四象限114分如图,四边形ABCD是边长为6的正

3、方形,点E在边AB上,BE=4,过点E作EFBC,分别交BD,CD于G,F两点假设M,N分别是DG,CE的中点,那么MN的长为A3BCD4124分一个大矩形按如图方式分割成九个小矩形,且只有标号为和的两个小矩形为正方形,在满足条件的所有分割中假设知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,那么n的最小值是A3B4C5D6二、填空题每题4分,总分值24分,将答案填在答题纸上134分实数8的立方根是144分分式方程=的解是154分如图,用同样大小的黑色棋子按如下列图的规律摆放:那么第个图案有个黑色棋子164分如图,一名滑雪运发动沿着倾斜角为34的斜坡,从A滑行至B,AB=500

4、米,那么这名滑雪运发动的高度下降了米参考数据:sin340.56,cos340.83,tan340.67174分ABC的三个顶点为A1,1,B1,3,C3,3,将ABC向右平移mm0个单位后,ABC某一边的中点恰好落在反比例函数y=的图象上,那么m的值为184分如图,在菱形纸片ABCD中,AB=2,A=60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,那么cosEFG的值为三、解答题本大题共8小题,共78分.解容许写出文字说明、证明过程或演算步骤.196分先化简,再求值:2+x2x+x1x+5,其中x=208分在44的方格纸中,ABC的三个顶点都在格点上

5、1在图1中画出与ABC成轴对称且与ABC有公共边的格点三角形画出一个即可;2将图2中的ABC绕着点C按顺时针方向旋转90,画出经旋转后的三角形218分大黄鱼是中国特有的地方性鱼类,有“国鱼之称,由于过去滥捕等多种因素,大黄鱼资源已根本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港、“御龙、“甬岱、“象山港共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱品种鱼苗成活率为80%,并把实验数据绘制成以下两幅统计图局部信息未给出:1求实验中“宁港品种鱼苗的数量;2求实验中“甬岱品种鱼苗的成活数,并补全条形统计图;3你认为应选哪一品种进

6、行推广请说明理由2210分如图,正比例函数y1=3x的图象与反比例函数y2=的图象交于A、B两点点C在x轴负半轴上,AC=AO,ACO的面积为121求k的值;2根据图象,当y1y2时,写出x的取值范围2310分2022年5月14日至15日,“一带一路国际合作顶峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路沿线国家和地区2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元1甲种商品与乙种商品的销售单价各多少元2假设甲、乙两种商品的销售总收入不低于5400万元,那么至少销售甲种商品多少万件2

7、410分在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连接EF,FG,GH,HE1求证:四边形EFGH为平行四边形;2假设矩形ABCD是边长为1的正方形,且FEB=45,tanAEH=2,求AE的长2512分如图,抛物线y=x2+x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C6,在抛物线上,直线AC与y轴交于点D1求c的值及直线AC的函数表达式;2点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延

8、长交AB于点N,假设M为PQ的中点求证:APMAON;设点M的横坐标为m,求AN的长用含m的代数式表示2614分有两个内角分别是它们对角的一半的四边形叫做半对角四边形1如图1,在半对角四边形ABCD中,B=D,C=A,求B与C的度数之和;2如图2,锐角ABC内接于O,假设边AB上存在一点D,使得BD=BO,OBA的平分线交OA于点E,连结DE并延长交AC于点F,AFE=2EAF求证:四边形DBCF是半对角四边形;3如图3,在2的条件下,过点D作DGOB于点H,交BC于点G,当DH=BG时,求BGH与ABC的面积之比2022年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小

9、题,每题4分,共48分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.14分2022宁波在,0,2这四个数中,为无理数的是ABC0D2【分析】分别根据无理数、有理数的定义即可判定选择项【解答】解:,0,2是有理数,是无理数,应选:A【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,0.8080080008每两个8之间依次多1个0等形式24分2022宁波以下计算正确的选项是Aa2+a3=a5B2a2=4aCa2a3=a5Da23=a5【分析】根据积的乘方等于乘方的积,同底数幂的乘法底数不变指数相加,可得答案【解答】解:A、不是同底数幂的乘法

10、指数不能相加,故A不符合题意;B、积的乘方等于乘方的积,故B不符合题意;C、同底数幂的乘法底数不变指数相加,故C符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;应选:C【点评】此题考查了幂的乘方与积的乘方,熟记法那么并根据法那么计算是解题关键34分2022宁波2022年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮“泰欧轮,其中45万吨用科学记数法表示为A0.45106吨B4.5105吨C45104吨D4.5104吨【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当

11、原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:将45万用科学记数法表示为:4.5105应选:B【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值44分2022宁波要使二次根式有意义,那么x的取值范围是Ax3Bx3Cx3Dx3【分析】二次根式有意义时,被开方数是非负数【解答】解:依题意得:x30,解得x3应选:D【点评】考查了二次根式的意义和性质概念:式子a0叫二次根式性质:二次根式中的被开方数必须是非负数,否那么二次根式无意义54分2022宁波如下列图的几何体的俯视图为ABCD【分析】根

12、据从上边看得到的图形是俯视图,可得答案【解答】解:从上边看外边是正六边形,里面是圆,应选:D【点评】此题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键64分2022宁波一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为ABCD【分析】让黄球的个数除以球的总个数即为所求的概率【解答】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是应选:C【点评】此题考查概率的根本计算,用到的知识点为:概率等于所求情况数与总情况数之比74分2022宁波直线mn,将一块含30角的直角三角板ABC按如图方式放置ABC=

13、30,其中A,B两点分别落在直线m,n上,假设1=20,那么2的度数为A20B30C45D50【分析】根据平行线的性质即可得到结论【解答】解:直线mn,2=ABC+1=30+20=50,应选D【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解题的关键84分2022宁波假设一组数据2,3,x,5,7的众数为7,那么这组数据的中位数为A2B3C5D7【分析】根据众数的定义可得x的值,再依据中位数的定义即可得答案【解答】解:数据2,3,x,5,7的众数为7,x=7,那么这组数据为2、3、5、7、7,中位数为5,应选:C【点评】此题考查众数与中位数的意义中位数是将一组数据从小到大或从大到小重新排

14、列后,最中间的那个数最中间两个数的平均数,叫做这组数据的中位数众数是数据中出现最多的一个数94分2022宁波如图,在RtABC中,A=90,BC=2,以BC的中点O为圆心分别与AB,AC相切于D,E两点,那么的长为ABCD2【分析】连接OE、OD,由切线的性质可知OEAC,ODAB,由于O是BC的中点,从而可知OD是中位线,所以可知B=45,从而可知半径r的值,最后利用弧长公式即可求出答案【解答】解:连接OE、OD,设半径为r,O分别与AB,AC相切于D,E两点,OEAC,ODAB,O是BC的中点,OD是中位线,OD=AE=AC,AC=2r,同理可知:AB=2r,AB=AC,B=45,BC=2

15、由勾股定理可知AB=2,r=1,=应选B【点评】此题考查切线的性质,解题的关键是连接OE、OD后利用中位线的性质求出半径r的值,此题属于中等题型104分2022宁波抛物线y=x22x+m2+2m是常数的顶点在A第一象限B第二象限C第三象限D第四象限【分析】先根据抛物线的顶点式求出抛物线y=x22x+m2+2m是常数的顶点坐标,再根据各象限内点的坐标特点进行解答【解答】解:y=x22x+m2+2=x12+m2+1,顶点坐标为:1,m2+1,10,m2+10,顶点在第一象限应选A【点评】此题考查的是二次函数的性质及各象限内点的坐标特点,根据题意得出抛物线的顶点坐标是解答此题的关键114分2022宁

16、波如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EFBC,分别交BD,CD于G,F两点假设M,N分别是DG,CE的中点,那么MN的长为A3BCD4【分析】作辅助线,构建全等三角形,证明EMFCMD,那么EM=CM,利用勾股定理得:BD=6,EC=2,可得EBG是等腰直角三角形,分别求EM=CM的长,利用勾股定理的逆定理可得EMC是等腰直角三角形,根据直角三角形斜边中线的性质得MN的长【解答】解:连接FM、EM、CM,四边形ABCD为正方形,ABC=BCD=ADC=90,BC=CD,EFBC,GFD=BCD=90,EF=BC,EF=BC=DC,BDC=ADC=45,G

17、FD是等腰直角三角形,M是DG的中点,FM=DM=MG,FMDG,GFM=CDM=45,EMFCMD,EM=CM,过M作MHCD于H,由勾股定理得:BD=6,EC=2,EBG=45,EBG是等腰直角三角形,EG=BE=4,BG=4,DM=MH=DH=1,CH=61=5,CM=EM=,CE2=EM2+CM2,EMC=90,N是EC的中点,MN=EC=;应选C【点评】此题考查了正方形的性质、三角形全等的性质和判定、等腰直角三角形的性质和判定、直角三角形斜边中线的性质、勾股定理的逆定理,属于根底题,此题的关键是证明EMC是直角三角形124分2022宁波一个大矩形按如图方式分割成九个小矩形,且只有标号

18、为和的两个小矩形为正方形,在满足条件的所有分割中假设知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,那么n的最小值是A3B4C5D6【分析】根据题意结合正方形的性质得出只有表示出矩形的各边长才可以求出面积,进而得出符合题意的答案【解答】解:如下列图:设的周长为:4x,的周长为2y,的周长为2b,即可得出的边长以及和的邻边和,设的周长为:4a,那么的边长为a,可得和中都有一条边为a,那么和的另一条边长分别为:ya,ba,故大矩形的边长分别为:ba+x+a=b+x,ya+x+a=y+x,故大矩形的面积为:b+xy+x,其中b,x,y都为数,故n的最小值是3应选:A【点评】此题主要考

19、查了推理与论证,正确结合正方形面积表示出矩形各边长是解题关键二、填空题每题4分,总分值24分,将答案填在答题纸上134分2022宁波实数8的立方根是2【分析】利用立方根的定义即可求解【解答】解:23=8,8的立方根是2故答案2【点评】此题主要考查了立方根的概念如果一个数x的立方等于a,即x的三次方等于ax3=a,那么这个数x就叫做a的立方根,也叫做三次方根144分2022宁波分式方程=的解是x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【解答】解:去分母得:4x+2=93x,解得:x=1,经检验x=1是分式方程的解,故答案为:x=1【点评】此

20、题考查了解分式方程,利用了转化的思想,解分式方程注意要检验154分2022宁波如图,用同样大小的黑色棋子按如下列图的规律摆放:那么第个图案有19个黑色棋子【分析】根据图中所给的黑色棋子的颗数,找出其中的规律,根据规律列出式子,即可求出答案【解答】解:第一个图需棋子1,第二个图需棋子1+3,第三个图需棋子1+32,第四个图需棋子1+33,第n个图需棋子1+3n1=3n2枚所以第个图形有19颗黑色棋子故答案为:19;【点评】此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律164分2022宁波如图,一名滑雪运发动沿着倾斜角为34的斜坡,从A滑行至B,AB=500

21、米,那么这名滑雪运发动的高度下降了280米参考数据:sin340.56,cos340.83,tan340.67【分析】如图在RtABC中,AC=ABsin34=5000.56280m,可知这名滑雪运发动的高度下降了280m【解答】解:如图在RtABC中,AC=ABsin34=5000.56280m,这名滑雪运发动的高度下降了280m故答案为280【点评】此题考查解直角三角形、坡度坡角问题、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于中考常考题型174分2022宁波ABC的三个顶点为A1,1,B1,3,C3,3,将ABC向右平移mm0个单位后,ABC某一边的中点恰好落在反比例

22、函数y=的图象上,那么m的值为4或【分析】求得三角形三边中点的坐标,然后根据平移规律可得AB边的中点1,1,BC边的中点2,0,AC边的中点2,2,然后分两种情况进行讨论:一是AB边的中点在反比例函数y=的图象上,二是AC边的中点在反比例函数y=的图象上,进而算出m的值【解答】解:ABC的三个顶点为A1,1,B1,3,C3,3,AB边的中点1,1,BC边的中点2,0,AC边的中点2,2,将ABC向右平移mm0个单位后,AB边的中点平移后的坐标为1+m,1,AC边的中点平移后的坐标为2+m,2ABC某一边的中点恰好落在反比例函数y=的图象上,1+m=3或22+m=3m=4或m=舍去故答案为4或【

23、点评】此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点x,y的横纵坐标的积是定值k,即xy=k184分2022宁波如图,在菱形纸片ABCD中,AB=2,A=60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,那么cosEFG的值为【分析】作EHAD于H,连接BE、BD,连接AE交FG于O,如图,利用菱形的性质得BDC为等边三角形,ADC=120,再在在RtBCE中计算出BE=CE=,接着证明BEAB,设AF=x,利用折叠的性质得到EF=AF,FG垂直平分AE,EFG=AFG,所以在RtBEF中利用勾股定理得2x2+2=x2,解得x

24、=,接下来计算出AE,从而得到OA的长,然后在RtAOF中利用勾股定理计算出OF,再利用余弦的定义求解【解答】解:作EHAD于H,连接BE、BD,连接AE交FG于O,如图,四边形ABCD为菱形,A=60,BDC为等边三角形,ADC=120,E点为CD的中点,CE=DE=1,BECD,在RtBCE中,BE=CE=,ABCD,BEAB,设AF=x,菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,EF=AF,FG垂直平分AE,EFG=AFG,在RtBEF中,2x2+2=x2,解得x=,在RtDEH中,DH=DE=,HE=DH=,在RtAEH中,AE=,AO=,在Rt

25、AOF中,OF=,cosAFO=故答案为【点评】此题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了菱形的性质三、解答题本大题共8小题,共78分.解容许写出文字说明、证明过程或演算步骤.196分2022宁波先化简,再求值:2+x2x+x1x+5,其中x=【分析】原式利用平方差公式,以及多项式乘以多项式法那么计算,去括号合并得到最简结果,把x的值代入计算即可求出值【解答】解:原式=4x2+x2+4x5=4x1,当x=时,原式=61=5【点评】此题考查了整式的混合运算化简求值,熟练掌握运算法那么是解此题的关键208分2022宁波

26、在44的方格纸中,ABC的三个顶点都在格点上1在图1中画出与ABC成轴对称且与ABC有公共边的格点三角形画出一个即可;2将图2中的ABC绕着点C按顺时针方向旋转90,画出经旋转后的三角形【分析】1根据成轴对称图形的概念,分别以边AC、BC所在的直线为对称轴作出图形即可;2根据网格结构找出点A、B绕着点C按顺时针方向旋转90后的对应点的位置,再与点C顺次连接即可【解答】解:如下列图【点评】此题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键218分2022宁波大黄鱼是中国特有的地方性鱼类,有“国鱼之称,由于过去滥捕等多种因素,大黄鱼资源已根本枯竭,目前,

27、我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港、“御龙、“甬岱、“象山港共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱品种鱼苗成活率为80%,并把实验数据绘制成以下两幅统计图局部信息未给出:1求实验中“宁港品种鱼苗的数量;2求实验中“甬岱品种鱼苗的成活数,并补全条形统计图;3你认为应选哪一品种进行推广请说明理由【分析】1求出“宁港品种鱼苗的百分比,乘以300即可得到结果;2求出“甬岱品种鱼苗的成活数,补全条形统计图即可;3求出三种鱼苗成活率,比较即可得到结果【解答】解:1根据题意得:300130%25%25%=60尾,那么实验中“宁港品

28、种鱼尾有60尾;2根据题意得:30030%80%=72尾,那么实验中“甬岱品种鱼苗有72尾成活,补全条形统计图:3“宁港品种鱼苗的成活率为100%=85%;“御龙品种鱼苗的成活率为100%=74.6%;“象山港品种鱼苗的成活率为100%=80%,那么“宁港品种鱼苗的成活率最高,应选“宁港品种进行推广【点评】此题考查了条形统计图,扇形统计图,弄清题中的数据是解此题的关键2210分2022宁波如图,正比例函数y1=3x的图象与反比例函数y2=的图象交于A、B两点点C在x轴负半轴上,AC=AO,ACO的面积为121求k的值;2根据图象,当y1y2时,写出x的取值范围【分析】1过点A作AD垂直于OC,

29、由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;2根据函数图象,找出满足题意x的范围即可【解答】解:1如图,过点A作ADOC,AC=AO,CD=DO,SADO=SACD=6,k=12;2根据图象得:当y1y2时,x的范围为x2或0x2【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握各函数的性质是解此题的关键2310分2022宁波2022年5月14日至15日,“一带一路国际合作顶峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路沿线国家和地区2件甲种商品与3件乙种

30、商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元1甲种商品与乙种商品的销售单价各多少元2假设甲、乙两种商品的销售总收入不低于5400万元,那么至少销售甲种商品多少万件【分析】1可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元,列出方程组求解即可;2可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可【解答】解:1设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有,解得答:甲种商品的销售单价900元,乙种商品的销售单价60

31、0元;2设销售甲种商品a万件,依题意有900a+6008a5400,解得a2答:至少销售甲种商品2万件【点评】此题考查一元一次不等式及二元一次方程组的应用,解决此题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系2410分2022宁波在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连接EF,FG,GH,HE1求证:四边形EFGH为平行四边形;2假设矩形ABCD是边长为1的正方形,且FEB=45,tanAEH=2,求AE的长【分析】

32、1由矩形的性质得出AD=BC,BAD=BCD=90,证出AH=CF,在RtAEH和RtCFG中,由勾股定理求出EH=FG,同理:EF=HG,即可得出四边形EFGH为平行四边形;2在正方形ABCD中,AB=AD=1,设AE=x,那么BE=x+1,在RtBEF中,BEF=45,得出BE=BF,求出DH=BE=x+1,得出AH=AD+DH=x+2,在RttAEH中,由三角函数得出方程,解方程即可【解答】1证明:四边形ABCD是矩形,AD=BC,BAD=BCD=90,BF=DH,AH=CF,在RtAEH中,EH=,在RtCFG中,FG=,AE=CG,EH=FG,同理:EF=HG,四边形EFGH为平行四

33、边形;2解:在正方形ABCD中,AB=AD=1,设AE=x,那么BE=x+1,在RtBEF中,BEF=45,BE=BF,BF=DH,DH=BE=x+1,AH=AD+DH=x+2,在RttAEH中,tanAEH=2,AH=2AE,2+x=2x,解得:x=2,AE=2【点评】此题考查了矩形的性质、勾股定理、平行四边形的判定、正方形的性质、三角函数等知识;熟练掌握矩形的性质和勾股定理是解决问题的关键2512分2022宁波如图,抛物线y=x2+x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C6,在抛物线上,直线AC与y轴交于点D1求c的值及直线AC的函数表达式;2点P在x轴正半轴上,点Q在

34、y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,假设M为PQ的中点求证:APMAON;设点M的横坐标为m,求AN的长用含m的代数式表示【分析】1把C点坐标代入抛物线解析式可求得c的值,令y=0可求得A点坐标,利用待定系数法可求得直线AC的函数表达式;2在RtAOB和RtAOD中可求得OAB=OAD,在RtOPQ中可求得MP=MO,可求得MPO=MOP=AON,那么可证得APMAON;过M作MEx轴于点E,用m可表示出AE和AP,进一步可表示出AM,利用APMAON可表示出AN【解答】解:1把C点坐标代入抛物线解析式可得=9+c,解得c=3,抛物线解析式为y=x2+x3,令

35、y=0可得x2+x3=0,解得x=4或x=3,A4,0,设直线AC的函数表达式为y=kx+bk0,把A、C坐标代入可得,解得,直线AC的函数表达式为y=x+3;2在RtAOB中,tanOAB=,在RtAOD中,tanOAD=,OAB=OAD,在RtPOQ中,M为PQ的中点,OM=MP,MOP=MPO,且MOP=AON,APM=AON,APMAON;如图,过点M作MEx轴于点E,那么OE=EP,点M的横坐标为m,AE=m+4,AP=2m+4,tanOAD=,cosEAM=cosOAD=,=,AM=AE=,APMAON,=,即=,AN=【点评】此题为二次函数的综合应用,涉及待定系数法、三角函数的定

36、义、相似三角形的判定和性质、等腰三角形的性质、直角三角形的性质及方程思想等知识在1中注意函数图象上的点的坐标满足函数解析式,以及待定系数法的应用,在2中确定出两对对应角相等是解题的关键,在2中用m表示出AP的长是解题的关键,注意利用相似三角形的性质此题考查知识点较多,综合性较强,难度较大2614分2022宁波有两个内角分别是它们对角的一半的四边形叫做半对角四边形1如图1,在半对角四边形ABCD中,B=D,C=A,求B与C的度数之和;2如图2,锐角ABC内接于O,假设边AB上存在一点D,使得BD=BO,OBA的平分线交OA于点E,连结DE并延长交AC于点F,AFE=2EAF求证:四边形DBCF是

37、半对角四边形;3如图3,在2的条件下,过点D作DGOB于点H,交BC于点G,当DH=BG时,求BGH与ABC的面积之比【分析】1根据题意得出B=D,C=A,代入A+B+C+D=360求出即可;2求出BEDBEO,根据全等得出BDE=BOE,连接OC,设EAF=,那么AFE=2EAF=2,求出EFC=1802,AOC=1802,即可得出等答案;3过点O作OMBC于M,求出ABC+ACB=120,求出OBC=OCB=30,根据直角三角形的性质得出BC=2BM=BO=BD,求出DBGCBA,根据相似三角形的性质得出即可【解答】解:1在半对角四边形ABCD中,B=D,C=A,A+B+C+D=360,3

38、B+3C=360,B+C=120,即B与C的度数和为120;2证明:在BED和BEO中BEDBEO,BDE=BOE,BCF=BOE,BCF=BDE,连接OC,设EAF=,那么AFE=2EAF=2,EFC=180AFE=1802,OA=OC,OAC=OCA=,AOC=180OACOCA=1802,ABC=AOC=EFC,四边形DBCF是半对角四边形;3解:过点O作OMBC于M,四边形DBCF是半对角四边形,ABC+ACB=120,BAC=60,BOC=2BAC=120,OB=OC,OBC=OCB=30,BC=2BM=BO=BD,DGOB,HGB=BAC=60,DBG=CBA,DBGCBA,=2=,DH=BG,BG=2HG,DG=3HG,=,=【点评】此题考查了相似三角形的性质和判定,全等三角形的性质和判定等知识点,能灵活运用性质进行推理是解此题的关键,难度偏大

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服