1、北师大版七年级数学上册单元练习试卷(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计30分)1、图中的几何体是由哪个图形绕虚线旋转一周得到的( )A . B . C . D .2、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为( )A .12 B .15 C .12+6 D .15+123、如图,是直角三角形的高,将直角三角形按以下方式旋转一周可以得到右侧几何体的是( )A .绕着旋转 B .绕着旋转 C .绕着旋转 D .绕着旋转4、如图所示,沿图中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A . B . C
2、 . D .5、从下列物体抽象出来的几何图形可以看成圆柱的是( )A . B . C . D .6、下列图形是棱锥的是( )A . B . C . D .7、下列图形绕虚线旋转一周,便能形成圆锥体的是()A . B . C . D .8、下面的几何体,是由A、B、C、D中的哪个图旋转一周形成的( )A . B . C . D .9、下列图形中,不属于立体图形的是( )A . B . C . D .10、如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是( )A .长方体 B .球 C .圆柱 D .圆锥11、将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是( )A
3、 . B . C . D .12、与易拉罐类似的几何体是( )A .圆锥 B .圆柱 C .棱锥 D .棱柱13、下列命题中,假命题是( )A .直角三角形斜边上的中线等于斜边的一半B .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C .若,则点B是线段AC的中点D .三角形三条边的垂直平分线的交点叫做这个三角形的外心14、如图,5个边长为的立方体摆在桌子上,则露在表面的部分的面积为( )A.13cm B.16cm C.20cm D .23cm15、圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A . B . C .
4、 D .二、填空题(每小题4分,共计20分)1、如图中的几何体有 个面,面面相交成 线2、如图,一个正方体由 27 个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体若新几何体与原正方体的表面积相等,则最多可以取走 个小立方块3、将下列几何体分类,柱体有: (填序号)4、笔尖在纸上写字说明 ;车轮旋转时看起来像个圆面,这说明 ;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明 .5、如图所示为8个立体图形.其中,柱体的序号为 ,锥体的序号为 ,有曲面的序号为 .三、判断题(每小题2分,共计6分)1、棱柱侧面的形状可能是一个三角形。( )2、体是由面围成的( )四、计算题(每
5、小题4分,共计12分)1、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积2、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?3、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积五、解答题(每小题4分,共计32分)1、用适当的语句表述图中点与直线的关系。(至少4句)2、长和宽分别是4cm和2cm的长方体分别沿长、宽所在直线旋转一周得到两
6、个几何体,哪个几何体的体积大?为什么?3、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形其露在外面的表面积是多少?(整个立体图形摆放在地上)4、如图,ABC中,已知BAC45,ADBC于D,BD2,DC3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出ABD、ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;(2)设AD=x,建立关于x的方程模型,求出x的值.5、探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边
7、中点所在直线为轴,旋转180,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图;方案二:以较短的一组对边中点所在直线为轴旋转,如图(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?6、如图,OA,OB,OC是圆的三条半径(1)若他们的圆心角度数比为1:2:3,求这三个扇形的圆心角的度数(2)在(1)的条件下,若圆的半径为2cm,求这三个扇形的面积(保留)7、将一个半径为2cm的圆分成3个扇形,其圆心角的比1:2:3,求:各个扇形的圆心角的度数其中最大一个扇形的面积8、把19个边长为2cm的正方体重叠起来,作成如图那样的立体图形,求这个立体图形的表面积