1、课时分层作业(四)解三角形的实际应用举例(建议用时:60分钟)一、选择题1学校体育馆的人字屋架为等腰三角形,如图所示,测得AC的长度为4 m,A30,则其跨度AB的长为()A12 mB8 mC3 m D4 mD由题意知,AB30,所以C1803030120,由正弦定理得,即AB4.2一艘船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为()A n mile/h B34 n mile/hC n mile/h D34 n mile/hA如图所示,在PMN中,MN34,v n mile/h.3如图所示,要测
2、量河对岸A,B两点间的距离,今沿河岸选取相距40米的C,D两点,测得ACB60,BCD45,ADB60,ADC30,则A,B间距离是()A20米 B20米C20米 D40米C可得DBDC40,由正弦定理得AD20(1),ADB60,所以在ADB中,由余弦定理得AB20(米).4在地面上点D处,测量某建筑物的高度,测得此建筑物顶端A与底部B的仰角分别为60和30,已知建筑物底部高出地面D点20 m,则建筑物高度为()A.20 m B30 mC40 m D60 mC如图,设O为顶端在地面的射影,在RtBOD中,ODB30,OB20,BD40,OD20,在RtAOD中,OAODtan 6060,AB
3、OAOB40(m).5如图所示,在地面上共线的三点A,B,C处测得一建筑物的仰角分别为30,45,60,且ABBC60 m,则建筑物的高度为()A15 m B20 mC25 m D30 mD设建筑物的高度为h,由题图知,PA2h,PBh,PCh,在PBA和PBC中,分别由余弦定理,得cos PBA,cos PBC.PBAPBC180,cos PBAcos PBC0.由,解得h30或h30(舍去),即建筑物的高度为30 m二、填空题6有一个长为1千米的斜坡,它的倾斜角为75,现要将其倾斜角改为30,则坡底要伸长 千米如图,BAO75,C30,AB1,ABCBAOBCA753045.在ABC中,A
4、C(千米).7如图所示,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A,B到点C的距离ACBC1 km,且C120,则A,B两点间的距离为 km.在ABC中,易得A30,由正弦定理,得AB21(km).8如图,某山上原有一条笔直的山路BC,现在又新架设了一条索道AC,小李在山脚B处看索道AC,发现张角ABC120,从B处攀登400米后到达D处,再看索道AC,发现张角ADC150,从D处再攀登800米方到达C处,则索道AC的长为 米400在ABD中,BD400,ABD120,因为ADB180ADC30,所以DAB30,所以ABBD400,AD400.在ADC中,DC800
5、,ADC150,AC2AD2DC22ADDCcos ADC(400)280022400800cos 150400213,所以AC400,故索道AC的长为400米三、解答题9如图,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A1处时,乙船位于甲船的北偏西105方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120方向的B2处,此时两船相距10海里,求乙船航行的速度解如图,连接A1B2,在A1A2B2中,易知A1A2B260,又易求得A1A23010A2B2,A1A2B2为正三角形,A1B210.在A1B1B2中,易知B
6、1A1B245,(B1B2)240020022010200,B1B210,乙船每小时航行30海里10江岸边有一炮台高30 m,江中有两条船,由炮台顶部测得俯角分别为45和30,而且两条船与炮台底部连线成30角,求两条船之间的距离解如图所示,CBD30,ADB30,ACB45.AB30(m),BC30(m),在RtABD中,BD30(m).在BCD中,CD2BC2BD22BCBDcos 30900,CD30(m),即两船相距30 m1.如图所示,从气球A上测得其正前下方的河流两岸B,C的俯角分别为75,30,此时气球的高度AD是60 m,则河流的宽度BC是()A240(1)mB180(1)mC1
7、20(1)m D30(1)mC由题意知,在RtADC中,C30,AD60 m,AC120 m在ABC中,BAC753045,ABC1804530105,由正弦定理,得BC120(1)(m).2如图所示,要测量底部不能到达的某电视塔AB的高度,在塔的同一侧选择C,D两个观测点,且在C,D两点测得塔顶的仰角分别为45,30,在水平面上测得BCD120,C,D两地相距500 m,则电视塔AB的高度是()A100 m B400 mC200 m D500 mD设ABx,在RtABC中,ACB45,BCABx.在RtABD中,ADB30,BDx.在BCD中,BCD120,CD500 m,由余弦定理得(x)
8、2x250022500x cos 120,解得x500 m3台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为 小时1设A地东北方向上存在点P到B的距离为30千米,APx,在ABP中,PB2AP2AB22APABcos A,即302x24022x40cos 45,化简得x240x7000,|x1x2|2(x1x2)24x1x2400,|x1x2|20,即图中的CD20(千米),故t1(小时).4如图,某海轮以60海里/小时的速度航行,在A点测得海面上油井P在南偏东60方向,向北航行40分钟后到达B点,测
9、得油井P在南偏东30方向,海轮改为北偏东60的航向再行驶80分钟到达C点,则P,C间的距离为 海里40因为AB40,BAP120,ABP30,所以APB30,所以AP40,所以BP2AB2AP22APABcos 120402402240404023,所以BP40.又PBC90,BC80,所以PC2BP2BC2(40)280211 200,所以PC40海里5如图,某人在塔的正东方向上的C处在与塔垂直的水平面内沿南偏西60的方向以每小时6千米的速度步行了1分钟以后,在点D处望见塔的底端B在东北方向上,已知沿途塔的仰角AEB,的最大值为60.(1)求该人沿南偏西60的方向走到仰角最大时,走了几分钟;
10、(2)求塔的高AB.(结果保留根号,不求近似值).解(1)依题意知,在DBC中,BCD30,DBC18045135,CD6 000100(m),BDC453015,由正弦定理得所以BC50(1)(m),在RtABE中,tan ,因为AB为定长,所以当BE的长最小时,取最大值60,这时BECD,当BECD时,在RtBEC中,ECBCcosBCE50(1)25(3)(m),设该人沿南偏西60的方向走到仰角最大时,走了t分钟,则t6060(分钟).(2)由(1)知当取得最大值60时,BECD,在RtBEC中,BEBCsin BCD,所以ABBEtan 60BCsinBCDtan 6050(1)25(3)(m),即所求塔高为25(3)m.